Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
基本信息
- 批准号:10668430
- 负责人:
- 金额:$ 57.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAccelerationAdoptionAreaArizonaAttentionBiological MarkersBiomedical EngineeringBiopsyBreathingCaliforniaCellsCessation of lifeCharacteristicsCirrhosisClassificationClinicClinicalCompensationDataDetectionDevelopmentDiagnosisDiseaseEarly DiagnosisFatty LiverFatty acid glycerol estersFibrosisFutureGoalsHealth Care CostsHepaticImage EnhancementInflammationInterdisciplinary StudyInterobserver VariabilityIron OverloadJointsLabelLifeLiverLiver FailureLiver FibrosisLiver parenchymaLos AngelesMRI ScansMagnetic ResonanceMagnetic Resonance ElastographyMagnetic Resonance ImagingMapsMeasuresMedical ImagingModelingMonitorMorbidity - disease rateMorphologic artifactsMotionOutcomePatientsPerformancePerfusionPhysicsPrimary carcinoma of the liver cellsProtocols documentationProtonsROC CurveRadialReproducibilityResearchRisk FactorsSampling ErrorsScanningSchemeSignal TransductionStagingTechniquesTechnologyTestingTimeTissuesTrainingUncertaintyUniversitiesValidationWaterchronic liver diseasecontrast enhanceddeep learningdeep learning modeldensitydisease classificationelastographyhepatocyte injuryimage processingimprovedlearning strategyliver biopsyliver inflammationmagnetic resonance imaging biomarkernew technologynon-alcoholic fatty livernon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnovel therapeuticsprospectiveprospective testreconstructionsensorsimple steatosistreatment response
项目摘要
PROJECT SUMMARY
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the U.S. and ranges
from simple fatty liver (or non-alcoholic fatty liver, NAFL) to the progressive form, non-alcoholic steatohepatitis
(NASH). About 20-30% of subjects with NAFL develop NASH, which is caused by hepatocyte injury, hepatic
inflammation, and resultant hepatic fibrosis. NASH can lead to life-threatening conditions, but is difficult to
diagnose at early stages. Liver biopsy is the current standard to diagnose NAFL/NASH, but biopsy is invasive,
has associated morbidity, and is limited by sampling errors and inter-observer variability. Many patients
present with later stage NASH, adversely impacting outcomes and healthcare costs, which are estimated at
$32 billion annually in the U.S. Magnetic resonance imaging (MRI), including elastography (MRE), is a
technology that can non-invasively quantify hepatic fat (MRI proton-density fat fraction), iron overload (MRI
R2*), and fibrosis (MRE stiffness). However, current liver MRI is challenged by motion artifacts and incomplete
signal models, which can compromise the accuracy and reproducibility of the quantitative parameters derived
from them. In addition, early tissue changes associated with NASH are not adequately characterized using
conventional MRI. The common requirements of breath-holding and long protocols also severely limit the
adoption of liver MRI in the clinic. Furthermore, the present clinical interpretation of MRI has limited ability to
distinguish NASH from NAFL. The research teams at the University of California Los Angeles, University of
Arizona, and Siemens have been leading the development of motion-robust radial MRI to quantify hepatic
PDFF and R2*, T2 and T1, perfusion, and stiffness. The Siemens team has also developed deep learning
methods for medical image processing and disease detection and classification. In this bioengineering
research partnership project, the multi-disciplinary research team will investigate four aims: (1) Develop a
robust motion compensation framework for free-breathing multi-parametric quantitative radial liver MRI; (2)
Accelerate quantitative liver MRI scans through combined acquisition and joint modeling of multiple
parameters, data undersampling, and deep learning-based reconstruction and quantification; (3) Develop deep
learning models to accurately classify NAFL versus NASH and measure the degree of fibrosis based on
quantitative MRI; (4) Prospectively assess the new quantitative MRI and deep learning technologies for
classifying NAFL versus NASH and measuring fibrosis in patients, with respect to liver biopsy. The new free-
breathing quantitative MRI and deep learning technologies developed in this project will accurately classify
NAFL versus NASH and measure fibrosis using data from the entire liver and thus help to avoid liver biopsy,
allow monitoring of treatment responses, and accelerate the development and implementation of new
therapies.
项目概要
非酒精性脂肪肝 (NAFLD) 是美国最常见的慢性肝病,范围广泛
从单纯性脂肪肝(或非酒精性脂肪肝,NAFL)到进行性非酒精性脂肪性肝炎
(纳什)。大约 20-30% 的 NAFL 受试者会发展为 NASH,这是由肝细胞损伤、肝
炎症,以及由此引起的肝纤维化。 NASH 可导致危及生命的疾病,但很难治愈
早期诊断。肝活检是目前诊断NAFL/NASH的标准,但活检是侵入性的,
具有相关的发病率,并受到抽样误差和观察者间变异的限制。很多病人
出现晚期 NASH,对结果和医疗费用产生不利影响,估计为
美国每年 320 亿美元的磁共振成像 (MRI),包括弹性成像 (MRE),是一项
可以非侵入性量化肝脂肪(MRI 质子密度脂肪分数)、铁过载(MRI
R2*) 和纤维化(MRE 硬度)。然而,当前的肝脏 MRI 受到运动伪影和不完整的挑战
信号模型,这可能会影响所导出的定量参数的准确性和再现性
来自他们。此外,与 NASH 相关的早期组织变化尚未通过以下方法得到充分表征:
常规 MRI。屏气和长时间协议的共同要求也严重限制了
临床上采用肝脏MRI。此外,目前 MRI 的临床解释能力有限
区分 NASH 和 NAFL。加州大学洛杉矶分校、加州大学洛杉矶分校的研究团队
亚利桑那州和西门子一直在引领运动稳健的径向 MRI 的开发,以量化肝脏
PDFF 和 R2*、T2 和 T1、灌注和硬度。西门子团队也开发了深度学习
医学图像处理以及疾病检测和分类的方法。在这个生物工程
研究伙伴关系项目中,多学科研究团队将研究四个目标:(1)开发
用于自由呼吸多参数定量径向肝脏 MRI 的稳健运动补偿框架; (2)
通过多个数据的组合采集和联合建模加速定量肝脏 MRI 扫描
参数、数据欠采样以及基于深度学习的重建和量化; (三)深层次发展
学习模型可准确分类 NAFL 与 NASH 并根据以下指标测量纤维化程度
定量磁共振成像; (4) 前瞻性评估新的定量MRI和深度学习技术
根据肝活检对 NAFL 与 NASH 进行分类并测量患者的纤维化情况。新的免费——
该项目开发的呼吸定量MRI和深度学习技术将准确分类
NAFL 与 NASH 相比,并使用整个肝脏的数据来测量纤维化,从而有助于避免肝活检,
允许监测治疗反应,并加速新疗法的开发和实施
疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria I. Altbach其他文献
Reproducible automated breast density measure with no ionizing radiation using fat-water decomposition MRI
使用脂肪水分解 MRI 进行可重复的自动乳腺密度测量,无需电离辐射
- DOI:
10.1002/jev2.12304 - 发表时间:
2018 - 期刊:
- 影响因子:4.4
- 作者:
Jie Ding;Alison T. Stopeck;Yi Gao;Marilyn T. Marron;Betsy C. Wertheim;Maria I. Altbach;Jean-Philippe Galons;Denise J. Roe;Fang Wang;Gertraud Maskarinec;Cynthia A. Thomson;Patricia A. Thompson;Chuan Huang - 通讯作者:
Chuan Huang
Maria I. Altbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria I. Altbach', 18)}}的其他基金
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10453927 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10684192 - 财政年份:2021
- 资助金额:
$ 57.49万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10280858 - 财政年份:2021
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10531585 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10063981 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10524177 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10320434 - 财政年份:2019
- 资助金额:
$ 57.49万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7391543 - 财政年份:2007
- 资助金额:
$ 57.49万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7261647 - 财政年份:2007
- 资助金额:
$ 57.49万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7595080 - 财政年份:2007
- 资助金额:
$ 57.49万 - 项目类别:
相似国自然基金
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
- 批准号:62374108
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
极端光场条件下正电子束的产生、加速和操控研究
- 批准号:12375244
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Liquid biopsy and radiomics for liver cancer surveillance
用于肝癌监测的液体活检和放射组学
- 批准号:
10736720 - 财政年份:2023
- 资助金额:
$ 57.49万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 57.49万 - 项目类别:
SSFP Cardiovascular MR Imaging on 3.0T Using Unified-Coil Local Shimming
使用统一线圈局部匀场在 3.0T 上进行 SSFP 心血管 MR 成像
- 批准号:
10530641 - 财政年份:2020
- 资助金额:
$ 57.49万 - 项目类别: