3/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
3/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
基本信息
- 批准号:10633130
- 负责人:
- 金额:$ 42.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-05 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnxietyAnxiety DisordersApplied GeneticsArchitectureBig DataClinicClinicalClinical DataCollaborationsComplexComputerized Medical RecordDataData SetDepressive disorderDiseaseEducationElectronic Health RecordEmploymentEnvironmental Risk FactorEpidemiologyEuropean ancestryEvaluationFeeling suicidalFundingGeneral PopulationGeneticGenetic ResearchGenetic RiskGenetic VariationGenotypeGeographyGoalsHealth systemHeritabilityHospitalizationIndividualKnowledgeLinkMachine LearningMajor Depressive DisorderMeasuresMedicalMedical centerMental HealthMental disordersMethodsModelingNatural Language ProcessingNew York CityOutcomeParticipantPatientsPerformancePersonsPhenotypePopulationPopulation HeterogeneityResearchRiskRoleSamplingScoring MethodSiteSubstance Use DisorderSuicide attemptSymptomsTextVariantbiobankcare outcomesclinical careclinical practicecohortcomorbiditycostdeep learningdisorder riskfunctional disabilitygenetic risk factorgenome wide association studygenome-widehealth care service utilizationimprovedinfancyinterestlarge datasetsmortality riskneuropsychiatric disorderpleiotropismpolygenic risk scorepopulation basedpsychiatric comorbiditypsychogeneticsresponserisk predictionrisk stratificationsocial determinantssocial health determinantsstructured datasuicidal behaviortechnique developmenttherapy resistanttraittreatment-resistant depression
项目摘要
PROJECT ABSTRACT
Major depressive disorder (MDD), anxiety disorders, and substance use disorders (SUDs) are common, complex
psychiatric traits that frequently co-occur and are associated with significant functional impairment, increased
healthcare utilization and cost, and higher mortality risk. Not only are these three conditions highly prevalent in
the general population and generate a huge societal burden, but recent studies by our team and others have
shown that shared covariance from common genetic variation significantly contributes to these psychiatric
comorbidities. Large data sets are needed to understand how the multifaceted interplay of genetics, including
polygenic risk scores (PRSs), and social determinants of health factors, such as employment and educational
attainment, can increase the risk of these psychiatric disorders and clinical outcomes, such as multiple
psychiatric hospitalizations. PRSs have shown potential for risk prediction, but the clinical utility of PRSs for
psychiatric conditions is just starting to be explored. Use of Electronic Health Records (EHRs) offers the promise
of large data sets to examine these relationships in cohorts of patients seen in clinical practice. However, the
use of EHRs is in its infancy in the study of psychiatric disorders and their treatment. This study will address
critical knowledge gaps in “genotype-psychiatric phenotype” relationships in large, demographically and
geographically diverse population-based samples derived from EHR-linked biobanks across four medical
centers - Columbia, Cornell, Mayo Clinic and Mount Sinai. Our objectives are to (1) develop improved methods
for EHR phenotyping of MDD, anxiety, and SUDs, and related outcomes based on a data-set of >30 million
EHRs, (2) evaluate associations between PRSs and these conditions, as well as (3) assess the association
between PRSs and outcomes including treatment resistance in MDD and healthcare utilization in patients with
MDD, anxiety and SUD. The PRS analyses will utilize data from biobanks with >50,000 persons with both EHR
and GWAS data. Successful completion of this study will generate new data in improving our understanding of
the clinical utility of PRSs for commonly occurring psychiatric disorders.
项目摘要
重度抑郁症 (MDD)、焦虑症和物质使用障碍 (SUD) 很常见且复杂
经常同时出现并与显着功能障碍相关的精神特征,增加
医疗保健利用和成本以及较高的死亡风险不仅在这三种情况中非常普遍。
普通民众并产生巨大的社会负担,但我们团队和其他人最近的研究表明
研究表明,共同遗传变异的共同协方差对这些精神疾病有显着影响
需要大量数据集来了解遗传学的多方面相互作用,包括
多基因风险评分(PRS)以及健康因素的社会决定因素,例如就业和教育
达到,会增加这些精神疾病和临床结果的风险,例如多种
PRS 已显示出风险预测的潜力,但 PRS 的临床实用性
电子健康记录 (EHR) 的使用才刚刚开始对精神疾病的探索。
大数据集来检查临床实践中患者群体中的这些关系。
电子病历在精神疾病及其治疗研究中的应用尚处于起步阶段。
在大规模、人口统计学和
来自四个医学领域与 EHR 相关的生物库的基于地理不同人群的样本
中心 - 哥伦比亚、康奈尔、梅奥诊所和西奈山 我们的目标是 (1) 开发改进的方法。
基于超过 3000 万个数据集,对 MDD、焦虑和 SUD 以及相关结果进行 EHR 表型分析
EHR,(2) 评估 PRS 与这些状况之间的关联,以及 (3) 评估该关联
PRS 与结果之间的关系,包括 MDD 的治疗抵抗和患有 MDD 的患者的医疗保健利用率
MDD、焦虑和 SUD 分析将利用来自拥有超过 50,000 名 EHR 患者的生物库的数据。
和 GWAS 数据的成功完成将产生新的数据,以提高我们的理解。
PRS 对常见精神疾病的临床效用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implicit bias of encoded variables: frameworks for addressing structured bias in EHR-GWAS data.
编码变量的隐性偏差:解决 EHR-GWAS 数据中结构化偏差的框架。
- DOI:
- 发表时间:2020-09-30
- 期刊:
- 影响因子:3.5
- 作者:Dueñas, Hillary R;Seah, Carina;Johnson, Jessica S;Huckins, Laura M
- 通讯作者:Huckins, Laura M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER W CHARNEY其他文献
ALEXANDER W CHARNEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER W CHARNEY', 18)}}的其他基金
2/3 Sequencing and Trans-Diagnostic Phenotyping of Severe Mental Illness in Diverse Populations
不同人群中严重精神疾病的 2/3 测序和跨诊断表型
- 批准号:
10503976 - 财政年份:2022
- 资助金额:
$ 42.93万 - 项目类别:
A multiscale investigation of the living human brain
对活人大脑的多尺度研究
- 批准号:
10035009 - 财政年份:2020
- 资助金额:
$ 42.93万 - 项目类别:
A multiscale investigation of the living human brain
对活人大脑的多尺度研究
- 批准号:
10260466 - 财政年份:2020
- 资助金额:
$ 42.93万 - 项目类别:
A multiscale investigation of the living human brain
对活人大脑的多尺度研究
- 批准号:
10668271 - 财政年份:2020
- 资助金额:
$ 42.93万 - 项目类别:
A multiscale investigation of the living human brain
对活人大脑的多尺度研究
- 批准号:
10450142 - 财政年份:2020
- 资助金额:
$ 42.93万 - 项目类别:
3/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
3/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10414027 - 财政年份:2019
- 资助金额:
$ 42.93万 - 项目类别:
3/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
3/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10197807 - 财政年份:2019
- 资助金额:
$ 42.93万 - 项目类别:
相似国自然基金
腹侧海马星形胶质细胞参与焦虑症发病的机制研究
- 批准号:82371513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
电针抑制AdipoR1蛋白磷酸化调控VTA相关环路功能改善焦虑症恐惧记忆障碍的机制研究
- 批准号:82374254
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高尿素通过调控REDD1/mTORC1信号通路促进慢性肾病伴发焦虑症的机制研究
- 批准号:82370739
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
前额叶皮层-丘脑前核环路在焦虑症诱发记忆障碍中的作用机制及电针干预研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
外泌体miR-208-3p靶向MAPK6调控NF-κB通路参与广泛性焦虑症神经微环境炎症的作用及机制研究
- 批准号:82160642
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 42.93万 - 项目类别:
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
- 批准号:
10752122 - 财政年份:2024
- 资助金额:
$ 42.93万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 42.93万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 42.93万 - 项目类别:
Addressing Weight Bias Internalization to Improve Adolescent Weight Management Outcomes
解决体重偏差内在化问题,改善青少年体重管理成果
- 批准号:
10642307 - 财政年份:2023
- 资助金额:
$ 42.93万 - 项目类别: