Data-driven Modeling and Ultrasound-based Control of Afferent Nerve Stimulation for Tremor Suppression

用于抑制震颤的传入神经刺激的数据驱动建模和基于超声的控制

基本信息

  • 批准号:
    10633292
  • 负责人:
  • 金额:
    $ 19.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Over 11 million people in the United States are affected by unintentional and uncontrollable rhythmic movements due to parkinsonian tremor, essential tremor, and cerebellar tremor. Individuals experiencing tremors in the hands and arms face difficulty performing activities of daily living. Electrical stimulation that works by stimulating motor nerves of antagonistic muscles is a potential wearable option for tremor suppression when medication is ineffective, but prior to pursuit of effective yet invasive (and costly) brain surgery. However, the two significant drawbacks of motor nerve stimulation are stimulation-induced muscle fatigue and discomfort due to high stimulation intensity. An intriguing new method of stimulation targets afferent nerve fibers to inhibit tremor in antagonistic muscles. These fibers relay sensory information on muscle position and velocity back to the spinal cord. By stimulating these fibers, spinal neural circuitry can be modulated that in turn inhibits muscle activity due to the descending tremor inputs from the brain. The new method uses low stimulation intensity, which is comfortable and fatigue resistant. However, modulating its stimulation parameters to continually disrupt tremors remains challenging, largely due to the numerous interactions that can occur between stimulated afferent nerves and the descending tremorgenic neural inputs. These interactions occur through a complex neural circuitry whose modeling is difficult and computationally intensive for determining stimulation parameters in real-time. Direct measurements of muscle velocity and length changes with ultrasound can help create a data-driven model of afferent stimulation and help design individual- specific afferent stimulation parameters. However, ultrasound has never been used for tremor suppression control. Real-time algorithms and models that map ultrasound-derived muscle activity to oscillating limb displacement are yet unestablished. These algorithms and models are needed to automate individual-specific stimulation parameters for tremor suppression. Lastly, for future clinical translation wearable ultrasound arrays that monitor multiple muscles need to be developed. The following two specific aims will address this work. SA 1: To model afferent feedback during tremor activity and design and validate a model-informed afferent stimulation strategy. SA2: To develop a wearable ultrasound array. If successful, a data-driven model of afferent stimulation will automate an individualized tremor suppression intervention. A future clinical translation of data-driven modeling, afferent stimulation technology, along with the wearable ultrasound array will improve the quality of life by assisting in suppressing prominent distal tremors.
项目概要 美国有超过 1100 万人受到无意识且无法控制的有节奏运动的影响 由于帕金森氏震颤、原发性震颤和小脑性震颤。手部颤抖的人 手臂在进行日常生活活动时面临困难。通过刺激运动起作用的电刺激 当药物无效时,拮抗肌神经是抑制震颤的潜在可穿戴选择, 但在追求有效但侵入性(且昂贵)的脑部手术之前。然而,它有两个显着的缺点: 运动神经刺激是由于高刺激强度而引起的肌肉疲劳和不适。一个 有趣的新方法刺激传入神经纤维以抑制拮抗肌的震颤。这些 纤维将肌肉位置和速度的感觉信息传递回脊髓。通过刺激这些纤维, 可以调节脊髓神经回路,从而抑制由于下降的震颤输入而导致的肌肉活动 来自大脑。新方法采用低刺激强度,舒适、耐疲劳。然而, 调节其刺激参数以持续扰乱震颤仍然具有挑战性,这主要是由于 受刺激的传入神经和下降的震颤神经之间可能发生许多相互作用 输入。这些相互作用通过复杂的神经回路发生,其建模困难并且需要计算 实时确定刺激参数的密集型。直接测量肌肉速度和长度 超声波的改变可以帮助创建数据驱动的传入刺激模型,并帮助设计个体 特定的传入刺激参数。然而,超声波从未用于震颤抑制控制。 将超声波衍生的肌肉活动映射到摆动肢体位移的实时算法和模型是 尚未成立。需要这些算法和模型来自动化个体特定的刺激参数 用于抑制震颤。最后,对于未来的临床翻译,可穿戴超声阵列可监测多个 肌肉需要发展。以下两个具体目标将解决这项工作。 SA 1:模拟传入 震颤活动期间的反馈以及设计和验证基于模型的传入刺激策略。 SA2:开发可穿戴超声阵列。如果成功,数据驱动的传入刺激模型将 自动化个性化震颤抑制干预。数据驱动建模的未来临床转化, 传入刺激技术以及可穿戴超声阵列将通过协助改善生活质量 抑制显着的远端震颤。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of a Wearable Ultrasound Transducer for Sensing Muscle Activities in Assistive Robotics Applications.
开发可穿戴超声波传感器,用于辅助机器人应用中感测肌肉活动。
  • DOI:
  • 发表时间:
    2023-01-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xue, Xiangming;Zhang, Bohua;Moon, Sunho;Xu, Guo;Huang, Chih;Sharma, Nitin;Jiang, Xiaoning
  • 通讯作者:
    Jiang, Xiaoning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nitin Sharma其他文献

Nitin Sharma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nitin Sharma', 18)}}的其他基金

Data-driven Modeling and Ultrasound-based Control of Afferent Nerve Stimulation for Tremor Suppression
用于抑制震颤的传入神经刺激的数据驱动建模和基于超声的控制
  • 批准号:
    10453618
  • 财政年份:
    2021
  • 资助金额:
    $ 19.83万
  • 项目类别:
Data-driven Modeling and Ultrasound-based Control of Afferent Nerve Stimulation for Tremor Suppression
用于抑制震颤的传入神经刺激的数据驱动建模和基于超声的控制
  • 批准号:
    10288130
  • 财政年份:
    2021
  • 资助金额:
    $ 19.83万
  • 项目类别:
Control of FES and an Electric Motor Drive for a hybrid gait neuroprosthesis
用于混合步态神经假体的 FES 和电动机驱动控制
  • 批准号:
    9018753
  • 财政年份:
    2015
  • 资助金额:
    $ 19.83万
  • 项目类别:

相似国自然基金

老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
  • 批准号:
    81902295
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Linking dementia pathology and alteration in brain activation to complex daily functional decline during the preclinical dementia stage
将痴呆病理学和大脑激活的改变与临床前痴呆阶段复杂的日常功能下降联系起来
  • 批准号:
    10662690
  • 财政年份:
    2023
  • 资助金额:
    $ 19.83万
  • 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
  • 批准号:
    10765991
  • 财政年份:
    2023
  • 资助金额:
    $ 19.83万
  • 项目类别:
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
  • 批准号:
    10643624
  • 财政年份:
    2023
  • 资助金额:
    $ 19.83万
  • 项目类别:
Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
  • 批准号:
    10657828
  • 财政年份:
    2023
  • 资助金额:
    $ 19.83万
  • 项目类别:
SCH: Integrating AI and System Engineering for Glucose Regulation in Diabetes
SCH:整合人工智能和系统工程来调节糖尿病的血糖
  • 批准号:
    10706604
  • 财政年份:
    2022
  • 资助金额:
    $ 19.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了