Novel bioengineering models to dissect cardiac cell-cell defects in arrhythmogenic cardiomyopathy
剖析致心律失常性心肌病心肌细胞缺陷的新型生物工程模型
基本信息
- 批准号:10667062
- 负责人:
- 金额:$ 21.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-12 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdipocytesArchitectureArrhythmiaAtrial Natriuretic FactorBioinformaticsBiomedical EngineeringBiomedical TechnologyCardiacCardiac MyocytesCell Differentiation processCellsClinical ManagementCouplingCuesDefectDepositionDesmosomesDevelopmentDiseaseDisease modelElectrophysiology (science)EngineeringEnvironmentEpicardiumEpitheliumEvaluationFGF2 geneFatty acid glycerol estersFibroblastsFibrosisGene MutationGenesGeneticGoalsHealthHeartHeart DiseasesHeart failureHumanImpairmentIn VitroInfiltrationMesenchymalModelingMolecularMolecular ProfilingMutationMyocardialMyocardial dysfunctionMyocardiumPathogenesisPathologicPatientsPhenotypePhysiologicalPhysiologyPropertyRelaxationReportingRoleScienceSourceSudden DeathSystemTechniquesTherapeuticTissue EngineeringTissue ModelVentricular Dysfunctionarrhythmogenic cardiomyopathycardiac tissue engineeringcell typecellular targetingcoronary fibrosisheart functionhuman modelimprovedinduced pluripotent stem celllipid biosynthesisnew therapeutic targetnovelnovel strategiesstem cell technologytherapeutic targetthree-dimensional modelingtranscriptomics
项目摘要
PROJECT SUMMARY
Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive fibrofatty replacement of the
myocardium, arrhythmias, and sudden death. Fibrofatty substitution in arrhythmogenic cardiomyopathy
contributes to worsening arrhythmogenesis by creating a non-conductive substrate, and causes ventricular
dysfunction leading to heart failure. The mechanisms underlying this disease are still unclear; a better
understanding of the pathogenesis is needed to find better options for clinical management. To address this
challenge, reliable species-specific models are needed; here we propose to develop a novel human model,
that will serve as a system to study the pathogenesis of cardiac fibrofatty infiltration. This study integrates
engineering and biomedical sciences, applying tissue engineering, cardiac physiology, bioinformatics and stem
cell technologies. Our long-term goal is to provide a model of fibrofatty myocardial infiltration to investigate
underlying disease mechanisms, which will lead to the development of greatly needed therapies for patients
who suffer from cardiac diseases related to the presence of fibrofatty infiltration. The central objective of this
proposal is to demonstrate that fibrofatty infiltration of the myocardium can be replicated in a 3D engineered
cardiac tissue, resembling deficient contractility and altered electrophysiological properties that mimic what is
observed in patients that suffer from ACM. The molecular signatures of fibrofatty infiltration in the context of our
engineered cardiac tissue model will also be analyzed. We will approach this in two aims. In Aim 1 we will
develop a 3D engineered cardiac tissue model of fibrofatty infiltration of the myocardium using hiPSCs from
patients with ACM. We will combine hiPSC-cardiomyocytes and hiPSC-epicardial cells treated to undergo
epithelial-mesenchymal transition; aiming to resemble the ACM functional phenotype. In Aim 2, exploiting the
role of the epicardium as source of fibrofatty infiltration; we will develop a 3D engineered cardiac tissue model
of myocardial fibrofatty infiltration using hiPSCs from healthy donors. In this study, we propose a strategy
based on evidence that fibrofatty infiltration is induced from epicardial activation; hiPSC-derived epicardial cells
will be treated to induce their further differentiation into fibroblasts and adipocytes. We will examine functional
and structural properties, along with single-cell transcriptomics of the engineered cardiac tissue models. We
expect that results from this study will advance our understanding of the contribution of specific cues from
ACM-related cells in the pathogenesis of fibrofatty remodeling; our physiologically relevant model will serve to
unravel the cell-cell cross-talk and mechanisms responsible for initiation and progression of fibrofatty infiltration
of the myocardium. This project will improve the health of patients with ACM by leading the development of a
human model of the disease and accelerating the application of biomedical technologies to interrogate disease
mechanisms, which will aid in the identification of novel therapeutic targets.
项目概要
致心律失常性心肌病 (ACM) 的特点是进行性纤维脂肪替代
心肌损伤、心律失常和猝死。致心律失常性心肌病中的纤维脂肪替代
通过产生非导电基质而导致心律失常恶化,并导致心室
功能障碍导致心力衰竭。这种疾病的发病机制尚不清楚;更好的
需要了解发病机制才能找到更好的临床治疗选择。为了解决这个问题
挑战,需要可靠的物种特异性模型;在这里我们建议开发一种新颖的人体模型,
这将作为研究心脏纤维脂肪浸润发病机制的系统。这项研究整合了
工程和生物医学科学,应用组织工程、心脏生理学、生物信息学和干细胞
细胞技术。我们的长期目标是提供纤维脂肪心肌浸润模型来研究
潜在的疾病机制,这将导致开发出患者急需的疗法
患有与纤维脂肪浸润相关的心脏病的人。本次活动的中心目标
该提案旨在证明心肌的纤维脂肪浸润可以在 3D 工程中复制
心脏组织,类似于收缩力不足和改变的电生理特性,模仿了
在患有 ACM 的患者中观察到。在我们的背景下纤维脂肪浸润的分子特征
还将分析工程心脏组织模型。我们将通过两个目标来实现这一目标。在目标 1 中,我们将
使用来自的 hiPSC 开发心肌纤维脂肪浸润的 3D 工程心脏组织模型
ACM 患者。我们将结合经过处理的 hiPSC 心肌细胞和 hiPSC 心外膜细胞进行
上皮-间质转化;旨在类似于 ACM 功能表型。在目标 2 中,利用
心外膜作为纤维脂肪浸润来源的作用;我们将开发 3D 工程心脏组织模型
使用来自健康供体的 hiPSC 进行心肌纤维脂肪浸润的研究。在这项研究中,我们提出了一个策略
基于纤维脂肪浸润是由心外膜激活引起的证据; hiPSC 来源的心外膜细胞
将进行处理以诱导其进一步分化为成纤维细胞和脂肪细胞。我们将检查功能
和结构特性,以及工程心脏组织模型的单细胞转录组学。我们
期望这项研究的结果将促进我们对特定线索的贡献的理解
ACM相关细胞在纤维脂肪重塑发病机制中的作用;我们的生理相关模型将有助于
揭示细胞间的相互作用以及导致纤维脂肪浸润的起始和进展的机制
心肌的。该项目将通过领导开发一种药物来改善 ACM 患者的健康
疾病的人体模型并加速应用生物医学技术来探究疾病
机制,这将有助于识别新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Cal y Mayor-Turnbull其他文献
Irene Cal y Mayor-Turnbull的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Cal y Mayor-Turnbull', 18)}}的其他基金
Defining the role of non-myocytes to achieve biologically relevant engineered myocardial tissues
定义非心肌细胞在实现生物学相关的工程化心肌组织中的作用
- 批准号:
10249331 - 财政年份:2020
- 资助金额:
$ 21.13万 - 项目类别:
Defining the role of non-myocytes to achieve biologically relevant engineered myocardial tissues
定义非心肌细胞在实现生物学相关的工程化心肌组织中的作用
- 批准号:
10064456 - 财政年份:2020
- 资助金额:
$ 21.13万 - 项目类别:
Harnessing the Benefits of Adult Stem Cell Exosomes for Enhancing Cardiac Contractile Function
利用成体干细胞外泌体的益处增强心脏收缩功能
- 批准号:
9319796 - 财政年份:2016
- 资助金额:
$ 21.13万 - 项目类别:
Harnessing the Benefits of Adult Stem Cell Exosomes for Enhancing Cardiac Contractile Function
利用成体干细胞外泌体的益处增强心脏收缩功能
- 批准号:
9319796 - 财政年份:2016
- 资助金额:
$ 21.13万 - 项目类别:
Harnessing the Benefits of Adult Stem Cell Exosomes for Enhancing Cardiac Contractile Function
利用成体干细胞外泌体的益处增强心脏收缩功能
- 批准号:
9750784 - 财政年份:2016
- 资助金额:
$ 21.13万 - 项目类别:
Harnessing the Benefits of Adult Stem Cell Exosomes for Enhancing Cardiac Contractile Function
利用成体干细胞外泌体的益处增强心脏收缩功能
- 批准号:
9167105 - 财政年份:2016
- 资助金额:
$ 21.13万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别: