Development of a Nanoparticle-Based Gene Editing Technology for Neurological Applications
开发用于神经学应用的基于纳米颗粒的基因编辑技术
基本信息
- 批准号:10669525
- 负责人:
- 金额:$ 109.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlzheimer&aposs DiseaseAnatomyAnimalsBlood - brain barrier anatomyBrainBrain DiseasesCRISPR therapeuticsChargeChromosome MappingClinicClustered Regularly Interspaced Short Palindromic RepeatsComplexConvectionCorpus striatum structureDRD2 geneDataDevelopmentDiffuseDiffusionDopamine D2 ReceptorEncapsulatedEngineeringFamily suidaeFormulationGenesGuide RNAHumanHuntington DiseaseInjectionsMagnetic Resonance ImagingMessenger RNAMiniature SwineMusNeurologicNeuronsNuclear Localization SignalParkinson DiseasePathogenicityPatientsPharmaceutical PreparationsPhaseProteinsRattusReagentReporter GenesRestShipsSignal PathwaySignal TransductionSiteTechnologyTestingTissuesToxic effectTransgenic OrganismsTranslationsVirusbasebase editingbrain tissuebrain volumecopolymerexperimental studyinnovationmacromoleculenanoparticlenervous system disorderneuroinflammationneurotransmissionnoveloverexpressionpreventscale uptranslational impacttranslational potential
项目摘要
CRISPR-based gene editing of the brain has the potential to revolutionize the treatment of neurological diseases.
A large number of incurable brain diseases, such as Huntington's, Alzheimer's and Parkinson's disease, are
caused by the over-expression of pathogenic proteins and could be treated with CRISPR based therapeutics.
However, despite its potential, developing CRISPR based therapeutics for the brain has been challenging
because of delivery problems. In particular, two key challenges need to be solved before gene editing in the
brains of large animals and in humans is possible. First, strategies for efficiently and safely delivering Cas9 and
gRNA into neurons, after an intracranial injection, need to be developed. Second, strategies that can enable a
large volume of brain tissue (> 1 cm) to be transfected after an intracranial injection of CRISPR reagents also
need to be developed.
The central objective of this proposal is to develop a delivery strategy for gene editing the brains of large animals
after an intracranial injection, termed convection-enhanced CRISPR (C-CRISPR). C-CRISPR is based on using
convection-enhanced delivery (CED) to deliver an engineered Cas9 RNP, which has been fused to multiple
nuclear localization signals (NLS), and has been encapsulated in PEGylated block copolymers. C-CRISPR
addresses the key translational bottlenecks that have prevented CRISPR from having a translational impact in
the brain. In particular, because it delivers the Cas9 RNP directly, it avoids the toxicity problems of viruses and
the manufacturing challenges of using mRNA, and consequently has great translational potential. In addition,
C-CRISPR uses CED to distribute the Cas9 RNP across centimeters of brain tissue, and therefore has the
potential to edit the brains of large animals. C-CRISPR is based on our preliminary data demonstrating that the
Cas9 RNP fused to multiple NLS signals can edit genes in murine brains after an intracranial injection, and that
Cas9 RNP complexed to PEG-block copolymers can be delivered to centimeters of brain tissue, in the striatum,
after delivery via CED. CED of engineered Cas9 RNP complexed to PEG block copolymers, therefore, has the
potential to edit genes in human patients. We propose therefore the following aims/milestones:
UG3 Specific Aim 1. Develop C-CRISPR formulations that distribute throughout the striatum of rats
UG3 Specific Aim 2. Develop C-CRISPR formulations that edit centimeters of brain tissue
UH3 Specific Aim 1. Develop C-CRISPR formulations that edit centimeters of tissue in pig brains
The experiments in this proposal are significant because, if successful, C-CRISPR will be the first example of a
non-viral delivery strategy that can edit genes in the brains of large animals. The experiments in this proposal
are innovative because C-CRISPR is the first example of a delivery strategy that effectively integrates 3
complementary technologies, (1) engineered Cas9 RNPs (2) PEGylation and (3) convective enhanced diffusion,
and will provide a roadmap for developing strategies for gene editing in higher animals.
基于 CRISPR 的大脑基因编辑有可能彻底改变神经系统疾病的治疗。
大量无法治愈的脑部疾病,如亨廷顿舞蹈病、阿尔茨海默病和帕金森病,
由致病蛋白过度表达引起,可以用基于 CRISPR 的疗法进行治疗。
然而,尽管有潜力,开发基于 CRISPR 的大脑疗法一直具有挑战性
因为交货问题。特别是,在基因编辑之前需要解决两个关键挑战
大型动物和人类的大脑是可能的。首先,高效、安全地递送 Cas9 和
颅内注射后,需要将 gRNA 培养成神经元。其次,可以采取的策略
颅内注射 CRISPR 试剂后也可转染大量脑组织(> 1 cm)
需要开发。
该提案的中心目标是开发一种对大型动物大脑进行基因编辑的传递策略
颅内注射后,称为对流增强 CRISPR (C-CRISPR)。 C-CRISPR 基于使用
对流增强递送 (CED) 来递送工程化的 Cas9 RNP,该 RNP 已融合到多个
核定位信号(NLS),并被封装在聚乙二醇化嵌段共聚物中。 C-CRISPR
解决了阻碍 CRISPR 产生翻译影响的关键翻译瓶颈
大脑。特别是,由于它直接传递Cas9 RNP,避免了病毒的毒性问题,
使用 mRNA 的制造挑战,因此具有巨大的转化潜力。此外,
C-CRISPR 使用 CED 将 Cas9 RNP 分布在脑组织的厘米范围内,因此具有
编辑大型动物大脑的潜力。 C-CRISPR 基于我们的初步数据,表明
与多个 NLS 信号融合的 Cas9 RNP 可以在颅内注射后编辑小鼠大脑中的基因,并且
与 PEG 嵌段共聚物复合的 Cas9 RNP 可以被递送至纹状体中数厘米的脑组织,
通过 CED 交付后。因此,工程化 Cas9 RNP 与 PEG 嵌段共聚物复合的 CED 具有
编辑人类患者基因的潜力。因此,我们提出以下目标/里程碑:
UG3 具体目标 1. 开发分布在大鼠纹状体中的 C-CRISPR 制剂
UG3 具体目标 2. 开发编辑厘米脑组织的 C-CRISPR 配方
UH3 具体目标 1. 开发可编辑猪脑中数厘米组织的 C-CRISPR 配方
该提案中的实验意义重大,因为如果成功,C-CRISPR 将成为第一个
可以编辑大型动物大脑中基因的非病毒传递策略。本提案中的实验
之所以具有创新性,是因为 C-CRISPR 是有效整合 3 种递送策略的第一个例子
互补技术,(1) 工程化 Cas9 RNP (2) 聚乙二醇化和 (3) 对流增强扩散,
并将为制定高等动物基因编辑策略提供路线图。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The delivery challenge: fulfilling the promise of therapeutic genome editing.
交付挑战:实现治疗性基因组编辑的承诺。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:46.9
- 作者:van Haasteren, Joost;Li, Jie;Scheideler, Olivia J;Murthy, Niren;Schaffer, David V
- 通讯作者:Schaffer, David V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krystof S Bankiewicz其他文献
Krystof S Bankiewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krystof S Bankiewicz', 18)}}的其他基金
Validation of a single-pass surgical trajectory to enable AAV2-hAADC infusion into brainstem and mid-brain in nonhuman primate
验证单次手术轨迹,使 AAV2-hAADC 能够输注到非人灵长类动物的脑干和中脑
- 批准号:
10040048 - 财政年份:2020
- 资助金额:
$ 109.61万 - 项目类别:
Development of a nanoparticle-based gene editing technology for neurological applications
开发用于神经学应用的基于纳米颗粒的基因编辑技术
- 批准号:
9810326 - 财政年份:2019
- 资助金额:
$ 109.61万 - 项目类别:
Development of a nanoparticle-based gene editing technology for neurological applications
开发用于神经学应用的基于纳米颗粒的基因编辑技术
- 批准号:
10012948 - 财政年份:2019
- 资助金额:
$ 109.61万 - 项目类别:
Development of a nanoparticle-based gene editing technology for neurological applications
开发用于神经学应用的基于纳米颗粒的基因编辑技术
- 批准号:
10619048 - 财政年份:2019
- 资助金额:
$ 109.61万 - 项目类别:
Development of a Nanoparticle-Based Gene Editing Technology for Neurological Applications
开发用于神经学应用的基于纳米颗粒的基因编辑技术
- 批准号:
10263159 - 财政年份:2019
- 资助金额:
$ 109.61万 - 项目类别:
A Safety and Efficacy study of AAV2-hAADC for AADC deficiency
AAV2-hAADC 治疗 AADC 缺乏症的安全性和有效性研究
- 批准号:
10299327 - 财政年份:2016
- 资助金额:
$ 109.61万 - 项目类别:
A Safety and Efficacy Study of AAV2-hAADC for AADC Deficiency
AAV2-hAADC 治疗 AADC 缺乏症的安全性和有效性研究
- 批准号:
10505606 - 财政年份:2016
- 资助金额:
$ 109.61万 - 项目类别:
Translational AAV Delivery Platform to the Brain
大脑转化 AAV 传递平台
- 批准号:
8303199 - 财政年份:2011
- 资助金额:
$ 109.61万 - 项目类别:
Translational AAV Delivery Platform to the Brain
大脑转化 AAV 传递平台
- 批准号:
8513428 - 财政年份:2011
- 资助金额:
$ 109.61万 - 项目类别:
Translational AAV Delivery Platform to the Brain
大脑转化 AAV 传递平台
- 批准号:
8696895 - 财政年份:2011
- 资助金额:
$ 109.61万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 109.61万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 109.61万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 109.61万 - 项目类别:
BIN1-interactome in Alzheimer's disease pathophysiology
BIN1-相互作用组在阿尔茨海默病病理生理学中的作用
- 批准号:
10677190 - 财政年份:2023
- 资助金额:
$ 109.61万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 109.61万 - 项目类别: