Development and Application of Organelle Chemotype Fingerprinting for the Functional Investigation of Organellar Chloride

细胞器化学型指纹图谱在氯化细胞器功能研究中的开发和应用

基本信息

  • 批准号:
    10664018
  • 负责人:
  • 金额:
    $ 36.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

SUMMARY/ABSTRACT As one of the most abundant anions in the human body, chloride plays a crucial role in human health. Chloride homeostasis is maintained inside the cell while the chloride level is varied based on the function of organelles. Dysregulation of chloride homeostasis caused by the mutation of chloride channels results in various human diseases such as cystic fibrosis (CFTR, >70,000 people worldwide), proteinuria and kidney stones (ClC-5, 39 million people in US), Osteoporosis (ClC-7, 10 million people in US, 43 million people in the risk group). Although five FDA-approved chloride channel modulators have been reported, they only target plasma membrane chloride channels due to the technical barrier. There is no FDA-approved or clinical trial drug that targets organellar chloride channel. The field of chloride channel-targeted therapy is still under-studied (5 FDA-approved drugs, 2 clinical trial) compared to other channels such as calcium, potassium, and sodium. The lack of understanding of the physiological role of organellar chloride and the well-characterized chloride channel are the biggest roadblocks for the development of chloride channel-targeted therapy. Therefore, suitable research tools with a high resolving ability to examine the organelle chloride in live cells is a highly urgent need, which is essential to elucidate the physiological role of organellar chloride and characterize the chloride channel. However, the current chloride measurement with one-dimensional analysis only shows the average ion level. It cannot observe the chloride level change in a minor subset of organelles triggered by the cellular pathway such as STING and autophagy. Furthermore, the typical fluorescence measurement can only tell the variation of the average chloride level (increase, decrease, and no significant change) in certain conditions. The current methods significantly hinder the identification of deactivated cell pathways or protein based on the chloride level measurement. The proposed research integrate organelle selective dual reporters, single organelle measurement, sub- cellular imaging, and the three-dimensional analysis, to fingerprint the chemotype of organelles along with STING pathway, autophagy, and mitochondrial respiration. Completion of the proposed study will find out the physiological role of organellar chloride which shed light on the chloride channel-targeted therapy. The development of the organelle chemotype fingerprinting technique will also provide tools to characterize chloride channels, evaluate chloride channel modulators and identify the deactivated cell pathways or proteins.
摘要/摘要 氯作为人体内最丰富的阴离子之一,对人体健康起着至关重要的作用。氯化物 细胞内维持稳态,而氯水平根据细胞器的功能而变化。 氯离子通道突变引起的氯离子稳态失调导致多种人类疾病 囊性纤维化(CFTR,全球超过 70,000 人)、蛋白尿和肾结石(ClC-5、39)等疾病 美国 1000 万人)、骨质疏松症(ClC-7,美国 1000 万人,4300 万人属于危险人群)。虽然 已报道了五种 FDA 批准的氯离子通道调节剂,它们仅针对质膜氯离子 渠道由于技术障碍。目前尚无 FDA 批准或临床试验的针对细胞器的药物 氯离子通道。氯离子通道靶向治疗领域仍处于研究之中(5 个 FDA 批准的药物,2 个 临床试验)与其他通道(如钙、钾和钠)进行比较。 对细胞器氯化物的生理作用和充分表征缺乏了解 氯离子通道是氯离子通道靶向治疗发展的最大障碍。 因此,需要具有高分辨率的合适研究工具来检查活体中的氯化细胞器 细胞是一个非常紧迫的需求,这对于阐明细胞器氯化物的生理作用至关重要 并表征氯离子通道。然而,目前的氯化物测量采用一维 分析仅显示平均离子水平。它无法观察一小部分的氯化物水平变化 由 STING 和自噬等细胞途径触发的细胞器。此外,典型的 荧光测量只能表明平均氯化物水平的变化(增加、减少和无) 显着变化)在某些条件下。目前的方法严重阻碍了失活的识别 基于氯离子水平测量的细胞途径或蛋白质。 拟议的研究整合了细胞器选择性双报告基因、单细胞器测量、亚细胞器 细胞成像和三维分析,与 STING 一起对细胞器的化学型进行指纹识别 途径、自噬和线粒体呼吸。完成拟议的研究将发现 细胞器氯的生理作用为氯离子通道靶向治疗提供了线索。这 细胞器化学型指纹技术的发展也将提供表征氯化物的工具 通道,评估氯离子通道调节剂并识别失活的细胞途径或蛋白质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ka Ho Leung其他文献

Ka Ho Leung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ka Ho Leung', 18)}}的其他基金

Prospective Evaluation of Chloride Channel-Targeted Therapy for Alzheimer's disease
氯离子通道靶向治疗阿尔茨海默病的前瞻性评价
  • 批准号:
    10712797
  • 财政年份:
    2022
  • 资助金额:
    $ 36.26万
  • 项目类别:
Undergraduate Summer Research in Chemical Biology
化学生物学本科暑期研究
  • 批准号:
    10810210
  • 财政年份:
    2022
  • 资助金额:
    $ 36.26万
  • 项目类别:

相似国自然基金

高尔基体应激介导的E-钙黏素自噬降解在三氯丙醇引起雌性生殖干细胞维持受损中的作用
  • 批准号:
    82304190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FAM134B介导内质网自噬调控MAMs钙转移在氟中毒性神经细胞损伤中的作用及机制研究
  • 批准号:
    82360672
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
毛蕊花糖苷靶向调控Mfn2维持钙稳态诱导骨骼肌内质网应激-MAMs-线粒体自噬改善癌因性疲劳的作用机制研究
  • 批准号:
    82360791
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
钙网蛋白通过MAM调控成釉细胞内钙离子分布和线粒体自噬的作用机制研究
  • 批准号:
    82260183
  • 批准年份:
    2022
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
Resolvin D1通过ATP6V0D2/VAMP8通路促进自噬流抑制肾脏草酸钙结石形成的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
  • 批准号:
    10677295
  • 财政年份:
    2023
  • 资助金额:
    $ 36.26万
  • 项目类别:
Microphysiological Systems to Study Hypoxic Cardiac Injury
研究缺氧性心脏损伤的微生理系统
  • 批准号:
    10591258
  • 财政年份:
    2023
  • 资助金额:
    $ 36.26万
  • 项目类别:
Mechanisms of reticulophagy and ER stress mitigation in epidermis
表皮网状吞噬和内质网应激缓解机制
  • 批准号:
    10726427
  • 财政年份:
    2023
  • 资助金额:
    $ 36.26万
  • 项目类别:
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
  • 批准号:
    10677295
  • 财政年份:
    2023
  • 资助金额:
    $ 36.26万
  • 项目类别:
Lysosomal control of plasma membrane -endoplasmic reticulum membrane contacts regulates neuronal excitability
溶酶体控制质膜-内质网膜接触调节神经元兴奋性
  • 批准号:
    10622184
  • 财政年份:
    2023
  • 资助金额:
    $ 36.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了