Lysosomal control of plasma membrane -endoplasmic reticulum membrane contacts regulates neuronal excitability
溶酶体控制质膜-内质网膜接触调节神经元兴奋性
基本信息
- 批准号:10622184
- 负责人:
- 金额:$ 26.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnimal BehaviorAttentionAutophagocytosisAwardBrainBrain MappingBrain regionCalciumCell membraneCellular MembraneCholesterolCholesterol HomeostasisChronicCommunicationDementiaDiseaseElectrophysiology (science)ElementsEndoplasmic ReticulumGatekeepingGenetic TranscriptionGolgi ApparatusHomeostasisInstructionIon ChannelKnowledgeLeadLinkLumen of the LysosomeLysosomesMembraneMetabolismMitochondriaModelingMolecularNerve DegenerationNeurodegenerative DisordersNeuronsNuclear Pore ComplexOpticsParkinson DiseaseReportingSeizuresShapesSignal TransductionSiteSymptomsSystemTestingToxic effectWorkbehavior testcholesterol transporterscytotoxicloss of function mutationlysosome membranemitochondrial membranemouse modelneuronal excitabilityneuropathologyneurotoxicnovelnovel therapeutic interventionprogressive neurodegenerationsuperresolution imaging
项目摘要
Project Summary
Lysosomes are sophisticated and dynamic cellular signaling centers that control metabolism, gene transcription,
calcium (Ca2+) homeostasis, and autophagy. A key mechanism through which lysosomes communicate and
receive instruction is via transfer of cholesterol at ER–lysosome membrane contact sites. At these contacts the
Niemann Pick C1 cholesterol transporter (NPC1) facilitates the efflux of cholesterol out of the lysosome before
it is transferred to the ER for distribution to other cellular membranes. Thus, NPC1 is a key gatekeeper in
cholesterol metabolism. Further underscoring its importance, loss of function mutations in NPC1 lead to the
progressive neurodegenerative disorder, NPC disease. This fatal condition has no cure and is characterized by
the accumulation of cholesterol within lysosome lumen and the progressive neurodegeneration of several brain
regions that are accompanied by a host of devastating symptoms including seizures, psychiatric problems, and
dementia. Notwithstanding clear neuropathological consequences for cholesterol dysregulation in NPC disease,
the molecular mechanism(s) linking loss of NPC1 function to disease neuropathology are unknown. Recently
our group has reported that loss of NPC1 function results in (i) neuron hyperexcitability, (ii) reorganization of ER–
Lysosome, ER–Golgi, and ER–mitochondrial membrane contact sites, and (iii) induces neurotoxic increases in
mitochondrial Ca2+. Despite this crucial information there are critical gaps in our knowledge regarding (1) the
consequences of enhanced excitability in NPC disease, (2) how lysosomal cholesterol transport alters the
molecular elements and choreography at neuronal ER–plasma membrane (ER–PM) contact sites, and (3) if
plasma membrane ion channels or ER–PM junctions can be targeted to reduce mitochondrial toxicity and
increase neuron viability in NPC disease. Our central hypothesis is that loss of NPC1 function results in
aberrant remodeling of ion channel distribution and function at ER–PM contacts to drive cytotoxic increases in
mitochondrial Ca2+ leading to neurodegeneration. To test this hypothesis, we implement a multi-scale approach,
including super-resolution imaging, electrophysiology, optical mapping of brain excitability, novel murine models,
and animal behavior testing to rigorously investigate the mechanisms by which cholesterol efflux from the
lysosome tunes neuron viability. The fundamental importance and ubiquitous expression of the NPC cholesterol
transporter means we should pay particular attention to molecular elements and signaling cascades that are
modified by its activity. Investigating the relationship between cholesterol homeostasis and ion channel signaling
at ER–PM membrane contacts in NPC provides a testable model for examining the interdependence of
lysosomal cholesterol and ion channel activity and has broad implications for several fields and other cholesterol-
linked diseases such as Alzheimer’s and Parkinson’s.
项目概要
溶酶体是复杂且动态的细胞信号传导中心,控制新陈代谢、基因转录、
钙 (Ca2+) 稳态和自噬是溶酶体交流和传播的关键机制。
接收指令是通过内质网-溶酶体膜接触位点的胆固醇转移来实现的。
Niemann Pick C1 胆固醇转运蛋白 (NPC1) 促进胆固醇从溶酶体中流出
它被转移到内质网并分布到其他细胞膜,因此,NPC1 是细胞膜的关键看门人。
NPC1 的功能突变会导致胆固醇代谢的重要性。
进行性神经退行性疾病,即鼻咽癌,这种致命疾病无法治愈,其特点是
溶酶体腔内胆固醇的积累和一些大脑的进行性神经变性
伴随着一系列毁灭性症状的地区,包括癫痫发作、精神问题和
尽管鼻咽癌疾病中胆固醇失调会产生明显的神经病理学后果,
最近,将 NPC1 功能丧失与疾病神经病理学联系起来的分子机制尚不清楚。
我们小组报告称,NPC1 功能丧失会导致 (i) 神经元过度兴奋,(ii) ER 重组
溶酶体、内质网-高尔基体和内质网-线粒体膜接触位点,以及 (iii) 诱导神经毒性增加
尽管有这些重要信息,但我们在以下方面的知识仍存在严重差距:(1)
鼻咽癌疾病中兴奋性增强的后果,(2) 溶酶体胆固醇转运如何改变
神经 ER-质膜 (ER-PM) 接触位点的分子元件和编排,以及 (3) 如果
可以靶向质膜离子通道或 ER-PM 连接来减少线粒体毒性和
我们的中心假设是 NPC1 功能丧失会导致神经元活力增加。
ER-PM接触处离子通道分布和功能的异常重塑导致细胞毒性增加
线粒体 Ca2+ 导致神经变性 为了检验这一假设,我们实施了一种多尺度方法,
包括超分辨率成像、电生理学、大脑兴奋性光学测绘、新型小鼠模型、
和动物行为测试,以严格研究胆固醇从体内流出的机制
溶酶体调节神经元活力 NPC 胆固醇的根本重要性和普遍表达。
转运蛋白意味着我们应该特别注意分子元件和信号级联
研究胆固醇稳态和离子通道信号传导之间的关系。
NPC 中的 ER-PM 膜接触提供了一个可测试的模型,用于检查
溶酶体胆固醇和离子通道活性,对多个领域和其他胆固醇具有广泛的影响-
阿尔茨海默氏症和帕金森氏症等相关疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eamonn James Dickson其他文献
Eamonn James Dickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eamonn James Dickson', 18)}}的其他基金
Regulation of phosphoinositide metabolism and calcium dynamics in the neocortex
新皮质中磷酸肌醇代谢和钙动态的调节
- 批准号:
10635365 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Alpha-Synuclein aberrantly modifies the nanoscale distribution and function of ion channels to promote neuronal cytotoxicity
α-突触核蛋白异常地改变离子通道的纳米级分布和功能以促进神经元细胞毒性
- 批准号:
10635208 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Membrane contact sites regulate cellular excitability
膜接触位点调节细胞兴奋性
- 批准号:
10524750 - 财政年份:2019
- 资助金额:
$ 26.67万 - 项目类别:
Membrane contact sites regulate cellular excitability
膜接触位点调节细胞兴奋性
- 批准号:
10061627 - 财政年份:2019
- 资助金额:
$ 26.67万 - 项目类别:
Membrane contact sites regulate cellular excitability
膜接触位点调节细胞兴奋性
- 批准号:
10302271 - 财政年份:2019
- 资助金额:
$ 26.67万 - 项目类别:
相似国自然基金
SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
- 批准号:82302142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新的先天性甲减致病基因CNTN6突变导致疾病的发生及其机制研究
- 批准号:82301943
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于纸基微流控芯片的食源性疾病致病因子即时检测技术研究
- 批准号:22304022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
索拉非尼通过诱导调节性T细胞抑制自身免疫性疾病的研究
- 批准号:32370955
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于域自适应的皮肤镜征象识别及脱发疾病智能诊断模型
- 批准号:62373324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Study to establish safety, tolerability and feasibility of LM11A-31 as a neuroprotective agent in aging people living with HIV and neurocognitive impairment on antiretroviral therapy
研究确定 LM11A-31 作为神经保护剂对老年艾滋病毒感染者和抗逆转录病毒治疗神经认知障碍患者的安全性、耐受性和可行性
- 批准号:
10762833 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Neuronal Activity in Sleep & Wake in Alzheimer's Disease Mice
睡眠中的神经元活动
- 批准号:
10723302 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Investigating the mechanisms by which systemic inflammation promotes Alzheimer’s disease: Asthma as a model and modifiable risk factor
研究全身炎症促进阿尔茨海默病的机制:哮喘作为模型和可改变的危险因素
- 批准号:
10661382 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别:
Reprogramming organismal lifespan through modulation of neuropeptides
通过调节神经肽重新编程有机体寿命
- 批准号:
10507323 - 财政年份:2023
- 资助金额:
$ 26.67万 - 项目类别: