Center for Restoration of Nervous System Function
神经系统功能恢复中心
基本信息
- 批准号:10665038
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAnalgesicsAnimal ModelAstrocytesBiological AssayBiological AvailabilityBurn injuryCarbamazepineCicatrixClinical ResearchCollaborationsDendritic SpinesDevelopmentDiseaseDrug DesignFamilial diseaseFamilyGenetic ModelsGenetic studyGoalsHumanIn VitroIndividualLeadLinkMolecularMolecular GeneticsMutationNerveNerve FibersNervous System PhysiologyNeuronsNociceptorsOralPainPain DisorderPain managementPathway interactionsPeripheral Nervous System DiseasesPharmacotherapyPhysiologicalPopulationPrecision therapeuticsProteomicsQuality of lifeRehabilitation therapyResearchResolutionRoleRouteSeveritiesSodium ChannelSpinal cord injuryStructureTimeTransgenic AnimalsVariantVeteransVisceral painabuse liabilityaddictionaxon regenerationaxonal degenerationcentral nervous system injurychannel blockerschronic painchronic pain managementclinical translationgain of function mutationgenetic varianthuman modelimprovedin vivoinduced pluripotent stem cellinhibitorinnovationlimb amputationmemberneuroprotectionnext generation sequencingnovelnovel therapeutic interventionpain signalpainful neuropathyperipheral painprogramsrepair strategyresiliencerestorationscaffoldscreeningspasticitystem cell modeltraffickingtranslational studytreatment strategy
项目摘要
Rehabilitation, as well as quality of life, in Veterans with nerve and spinal cord injury, traumatic limb amputation,
burn injury, and peripheral neuropathy is severely hampered by chronic pain and spasticity. Current treatments
in many cases are ineffective or partially effective, and can be addictive. Our Center has developed robust
research programs with unique capabilities to develop novel, more effective, and non-addictive treatments for
Veterans with chronic pain and spasticity. Our research has progressed from molecular physiological studies in
vitro and in animal models, to stem cell-derived models such as iPSCs and clinical translational studies, and
from rare human familial disorders that provide genetic models to more common disorders that affect broader
populations. We will now build on this progress in the five major research programs summarized below.
Research Program I: Nav1.7—From Target to Therapy for Pain. We have provided a direct link between
Nav1.7 and human pain disorders, and collaborated with Pfizer and Biogen to advance clinical studies of
orally-bioavailable, Nav1.7-selective blockers for the treatment of neuropathic pain. As a parallel route to new
pain medications, we will also move forward with a large-scale in-house effort to identify the atomic structure of
human Nav1.7 and the molecular determinants of the dual Nav1.7 blocking/gating modifying action of
carbamazepine, which should provide a high-resolution scaffold for rational drug design.
Research Program II: Molecular Genetics of Pain Resilience. We are a worldwide hub for molecular
genetic studies on IEM, a genetic model of human neuropathic pain, in which gain-of-function mutations of
Nav1.7 produce profound hyperexcitability of peripheral pain-signaling DRG neurons that cause pain. We now
plan in-depth study of a family with the Nav1.7-S241T mutation that causes IEM, whose individual members
each manifest pain with distinctly different severity, using an innovative platform of iPSC-derived sensory
neurons, and next-generation sequencing to identify and validate allelic variants that confer pain resilience.
Research Program III: Additional Targets for Pain Pharmacotherapy. Our studies have identified and
validated Nav1.8 and Nav1.9 as additional targets for pain in humans, and have expanded the spectrum of
human neuropathic pain disorders associated with mutations in Na+ channels. We will extend our findings of a
dual action of CBZ as a Na+ channel blocker/gating modifier, from Nav1.7 to Nav1.8 to establish the
generalizability of this novel concept. We will build a proteomics platform to identify channel partners that
regulate trafficking of Nav1.9 within nociceptors, which will advance us toward screening platforms and
enhance understanding of this channel, which has been implicated in both somatic and visceral pain.
Research Program IV: Neuroprotective Strategies in Sodium-Channel Related Peripheral
Neuropathies. We have started to unravel the cellular pathways that contribute to axonal degeneration in
peripheral neuropathies, and have shown that Na+ channel blockers and inhibitors of Na+/Ca2+ exchanger can
rescue degenerating axons in vitro. We will use in vitro functional assays, and in vivo transgenic animal
models, to advance our understanding of the mechanisms by which Nav1.7 channel variants associated with
painful peripheral neuropathy lead to degeneration of axons of DRG neurons, and will assess treatment
strategies with the goal of implementing them in clinical translational studies.
Research Program V: Advancing Toward Translational Studies in SCI. Our Center has provided
substantial evidence for!a strong correlation between dendritic spine dysgenesis and hyperexcitability
disorders associated with SCI, and for a role of sodium channels, especially in astrocytes, in the formation of
glial scars. We will target the Rac1-Pak1 pathway, which we have implicated in dendritic spine dysgenesis, and
also investigate mechanisms that inhibit axonal regeneration, including factors within the glial scar, with the
goal of developing more effective strategies for repair and protection of the injured CNS.
患有神经和脊髓损伤、创伤性截肢的退伍军人的康复和生活质量,
烧伤和周围神经病变受到慢性疼痛和痉挛的严重阻碍。
在许多情况下是无效或部分有效的,并且可能会让人上瘾。
具有独特能力的研究项目,可开发新颖、更有效且不成瘾的治疗方法
我们对患有慢性疼痛和痉挛的退伍军人的分子生理学研究取得了进展。
体外和动物模型,干细胞衍生模型,如 iPSC 和临床转化研究,以及
从提供遗传模型的罕见人类家族性疾病到影响更广泛的更常见疾病
我们现在将在以下总结的五个主要研究计划中继续取得这一进展。
研究计划 I:Nav1.7——从目标到疼痛治疗 我们提供了两者之间的直接联系。
Nav1.7 和人类疼痛疾病,并与辉瑞和百健合作推进临床研究
口服生物可利用的 Nav1.7 选择性阻滞剂,用于治疗神经性疼痛作为新的并行途径。
止痛药方面,我们还将推进大规模的内部工作,以确定其原子结构
人类 Nav1.7 和 Nav1.7 双重阻断/门控修饰作用的分子决定因素
卡马西平,它应该为合理的药物设计提供高分辨率的支架。
研究计划 II:疼痛抵抗力的分子遗传学 我们是全球分子遗传学中心。
IEM 的遗传学研究,IEM 是人类神经性疼痛的遗传模型,其中功能获得性突变
Nav1.7 使外周疼痛信号 DRG 神经元产生严重的过度兴奋,从而引起疼痛。
计划对一个具有导致 IEM 的 Nav1.7-S241T 突变的家族进行深入研究,该家族的个体成员
使用 iPSC 衍生的感觉创新平台,每种疼痛的严重程度明显不同
神经元和下一代测序来识别和验证赋予疼痛恢复能力的等位基因变异。
研究计划 III:我们的研究已经确定并确定了疼痛药物治疗的其他目标。
验证 Nav1.8 和 Nav1.9 作为人类疼痛的附加目标,并且具有扩展的范围
与 Na+ 通道突变相关的人类神经性疼痛疾病我们将扩展我们的发现。
CBZ 作为 Na+ 通道阻断剂/门控调节剂的双重作用,从 Nav1.7 到 Nav1.8,以建立
我们将建立一个蛋白质组学平台来识别渠道合作伙伴。
调节伤害感受器内 Nav1.9 的贩运,这将推动我们走向筛选平台和
增强对该通道的了解,该通道与躯体和内脏疼痛有关。
研究计划四:钠通道相关外周神经保护策略
我们已经开始解开导致轴突变性的细胞途径。
周围神经病变,并表明 Na+ 通道阻滞剂和 Na+/Ca2+ 交换器抑制剂可以
我们将使用体外功能测定和体内转基因动物来拯救退化的轴突。
模型,以加深我们对 Nav1.7 通道变体与相关机制的理解
疼痛性周围神经病变导致 DRG 神经元轴突变性,将评估治疗
策略,目标是在临床转化研究中实施它们。
研究计划五:推进 SCI 转化研究。
大量证据表明树突棘发育不全与过度兴奋之间存在很强的相关性
与 SCI 相关的疾病,以及钠通道的作用,特别是在星形胶质细胞中,在形成
我们将针对与树突棘发育不全有关的 Rac1-Pak1 通路,以及
还研究了抑制轴突再生的机制,包括神经胶质疤痕内的因素,
开发更有效的策略来修复和保护受伤的中枢神经系统的目标。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ih current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain.
Ih 电流可稳定啮齿动物 DRG 神经元的兴奋性,并逆转遗传性神经性疼痛的伤害性神经元模型中的过度兴奋性。
- DOI:
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Vasylyev, Dmytro V;Liu, Shujun;Waxman, Stephen G
- 通讯作者:Waxman, Stephen G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sulayman D Dib-Hajj其他文献
A SCN10A SNP biases human painsensitivity
SCN10A SNP 会影响人类的疼痛敏感性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ningbo Li;Sulayman D Dib-Hajj;Stephen G Waxman;Xianwei Zhang - 通讯作者:
Xianwei Zhang
Sulayman D Dib-Hajj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sulayman D Dib-Hajj', 18)}}的其他基金
Dynamic regulation of axonal trafficking and surface distribution of Nav1.7 in sensory neurons
感觉神经元轴突运输和 Nav1.7 表面分布的动态调节
- 批准号:
10293536 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dynamic regulation of axonal trafficking and surface distribution of Nav1.7 in sensory neurons
感觉神经元轴突运输和 Nav1.7 表面分布的动态调节
- 批准号:
10618775 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery and/or Validation of Pharmacodynamic Markers
药效标记物的发现和/或验证
- 批准号:
10398392 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Sodium Channel Nav1.6 in Chemotherapy-Induced Pain
钠通道 Nav1.6 在化疗引起的疼痛中的作用
- 批准号:
10311616 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Sodium Channel Nav1.6 in Chemotherapy-Induced Pain
钠通道 Nav1.6 在化疗引起的疼痛中的作用
- 批准号:
10700086 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Sodium Channel Nav1.6 in Chemotherapy-Induced Pain
钠通道 Nav1.6 在化疗引起的疼痛中的作用
- 批准号:
10507771 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dynamic regulation of axonal trafficking and surface distribution of Nav1.7 in sensory neurons
感觉神经元轴突运输和 Nav1.7 表面分布的动态调节
- 批准号:
10012510 - 财政年份:2021
- 资助金额:
-- - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Development of a phenotypic screening assay for novel compounds that inhibit peripheral pain-sensing neurons
开发抑制外周痛觉神经元的新型化合物的表型筛选试验
- 批准号:
10650640 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Lymphocyte Antigen 6 (Ly6) Proteins: New Players in Chronic Pain
淋巴细胞抗原 6 (Ly6) 蛋白:慢性疼痛的新参与者
- 批准号:
10784019 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of positive TMEM97 modulators for treating neuropathic pain
开发用于治疗神经性疼痛的正 TMEM97 调节剂
- 批准号:
10642506 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
-- - 项目类别: