Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
基本信息
- 批准号:10563279
- 负责人:
- 金额:$ 77.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedBehaviorBehavioralCardiovascular PhysiologyCaringCellular PhoneClinicalClinical TrialsDataDisease remissionEffectivenessEmotionsEquipment and supply inventoriesFrequenciesGoalsHealth Services AccessibilityHealthcare SystemsIndividualInterventionKnowledgeLeadMachine LearningMeasuresMental DepressionMental HealthMental Health ServicesMethodsModelingMonitorOutcomeOutpatientsPathway interactionsPatientsPersonsPharmaceutical PreparationsPhysical activityPopulationPrecision therapeuticsPredictive FactorPsychotherapyPublic HealthQuality of lifeRecording of previous eventsRecoveryResearchSample SizeSamplingSignal TransductionSleepSpeedSurveysSymptomsTechnologyTimeTranslatingWaiting ListsWorkanalytical methodanalytical toolbaseclinical practicedemographicsdensitydepressive symptomsdesigndigital interventiondisabilityevidence baseexperienceimprovedindividualized medicineineffective therapiesinnovationmobile computingnovelpatient responsepersistent symptompredictive modelingprogramsrecruitsensorsocial engagementtreatment durationtreatment effecttreatment responsetreatment trialwearable sensor technology
项目摘要
Abstract
Tailoring care to match patients to the treatment most effective for them has the potential to accelerate
recovery and meaningfully reduce the growing burden of depression. A key barrier to tailoring care is the
absence of objective, real-time methods to effectively predict and assess treatment response. Mobile
technology holds promise to overcome this barrier. Specifically, smartphones and wearable sensors collect
passive, continuous and objective measures of constructs central to depression, such as sleep, physical
activity, cardiovascular function, and social engagement. Studies have demonstrated associations of single
measures from these domains with depression. However, because most prior wearable studies have had
limited sample sizes, they have not been able to synthesize actionable information across multiple domains of
mobile technology data and effectively guide treatment. Our long-term goal is to substantially increase the
effectiveness of depression treatments and the capacity of our mental health care system. Our objective in this
application is to identify factors that can be used to effectively match patients to treatments and track their
recovery. Through the PROviding Mental health Precision Treatment (PROMPT) study, we will complete the
following specific aims: Aim 1) Identify factors that predict which treatment is most likely to reduce depression
symptoms for a specific patient; and Aim 2) Identify passive mobile technology-based measures that serve as
signals of treatment response. To achieve these aims, we will recruit 2,200 subjects from waitlist for outpatient
depression treatment. We will then track patients for six months through wearable sensors, smartphones, and
repeated surveys. For both aims, we will use machine learning approaches to develop comprehensive
prediction models. Our approach is innovative because it applies technology and analytic tools to a large and
diverse sample of subjects receiving treatment under real world conditions. Further, the project is designed to
lead directly to an organization-level intervention that matches patients to treatments and continuously
monitors their response to treatment. Finally, this project is significant because it has the potential to greatly
accelerate recovery by identifying the treatment from which each person is likely to derive the most benefit,
ultimately helping to address the high population burden of depression.
抽象的
定制护理以使患者适应对他们最有效的治疗有可能加速
康复并有意义地减轻日益增长的抑郁症负担。定制护理的一个主要障碍是
缺乏客观、实时的方法来有效预测和评估治疗反应。移动的
技术有望克服这一障碍。具体来说,智能手机和可穿戴传感器收集
对抑郁症核心结构的被动、连续和客观测量,例如睡眠、身体状况
活动、心血管功能和社会参与。研究表明,单一的关联
抑郁症的这些领域的衡量标准。然而,由于大多数先前的可穿戴研究已经
由于样本量有限,他们无法跨多个领域综合可操作的信息
移动技术数据,有效指导治疗。我们的长期目标是大幅增加
抑郁症治疗的有效性以及我们的精神卫生保健系统的能力。我们的目标是
应用程序是确定可用于有效地将患者与治疗相匹配并跟踪他们的因素
恢复。通过提供心理健康精准治疗(PROMPT)研究,我们将完成
遵循特定目标: 目标 1) 确定预测哪种治疗最有可能减轻抑郁症的因素
特定患者的症状;目标 2) 确定基于无源移动技术的措施,作为
治疗反应的信号。为了实现这些目标,我们将从门诊候补名单中招募 2,200 名受试者
抑郁症治疗。然后,我们将通过可穿戴传感器、智能手机和
反复调查。为了这两个目标,我们将使用机器学习方法来开发全面的
预测模型。我们的方法是创新的,因为它将技术和分析工具应用于大型和
在现实世界条件下接受治疗的受试者的不同样本。此外,该项目旨在
直接导致组织层面的干预,使患者与治疗相匹配,并持续
监测他们对治疗的反应。最后,这个项目意义重大,因为它有潜力极大地
通过确定每个人可能从中受益最大的治疗来加速康复,
最终帮助解决抑郁症带来的沉重人口负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy S B Bohnert其他文献
Association Between Cost-Sharing and Buprenorphine Prescription Abandonment.
费用分摊与放弃丁丙诺啡处方之间的关联。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.7
- 作者:
Kao;Rena M. Conti;Pooja Lagisetty;Amy S B Bohnert;Usha Nuliyalu;Thuy - 通讯作者:
Thuy
Protocol for a pragmatic trial of Cannabidiol (CBD) to improve chronic pain symptoms among United States Veterans
大麻二酚(CBD)改善美国退伍军人慢性疼痛症状的实用试验方案
- DOI:
10.1186/s12906-024-04558-3 - 发表时间:
2024-06-29 - 期刊:
- 影响因子:3.9
- 作者:
Rachel S. Bergmans;Riley Wegryn;Catherine Klida;Vivian Kurtz;Laura Thomas;David A Williams;Daniel J. Clauw;K. Kidwell;Amy S B Bohnert;K. Boehnke - 通讯作者:
K. Boehnke
Amy S B Bohnert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy S B Bohnert', 18)}}的其他基金
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10313694 - 财政年份:2022
- 资助金额:
$ 77.99万 - 项目类别:
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10595496 - 财政年份:2022
- 资助金额:
$ 77.99万 - 项目类别:
Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
- 批准号:
10700120 - 财政年份:2022
- 资助金额:
$ 77.99万 - 项目类别:
Reducing Non-Medical Opioid Use: An automatically adaptive mHealth Intervention
减少非医疗阿片类药物的使用:自动适应的移动医疗干预措施
- 批准号:
9416993 - 财政年份:2016
- 资助金额:
$ 77.99万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10027245 - 财政年份:2015
- 资助金额:
$ 77.99万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10165792 - 财政年份:2015
- 资助金额:
$ 77.99万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10162313 - 财政年份:2015
- 资助金额:
$ 77.99万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
9145508 - 财政年份:2015
- 资助金额:
$ 77.99万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8636645 - 财政年份:2014
- 资助金额:
$ 77.99万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8811923 - 财政年份:2014
- 资助金额:
$ 77.99万 - 项目类别:
相似国自然基金
赖氨酸甲基转移酶SETD7通过P53信号通路调控Gli1+细胞生物学行为及其在颅面骨稳态维持中的作用研究
- 批准号:82301050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
斑蝥素通过抑制BIRC5激活ATG5/ATG7促进自噬抑制非小细胞肺癌恶性行为的作用和机制研究进展
- 批准号:82360485
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
葡萄糖通过调节乙酰化识别蛋白BRD4促进乳腺癌恶性行为的机制和功能研究
- 批准号:32371320
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
蜘蛛香通过调控ERβ/肠道菌群/HPA轴改善溃疡性结肠炎小鼠焦虑样行为的机制研究
- 批准号:82360810
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别:
Crosstalk Between Nurr1 and Risk Factors of Parkinson's Disease and its Regulation by Nurr1's Ligands
Nurr1与帕金森病危险因素的串扰及其配体的调控
- 批准号:
10677221 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别:
A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
- 批准号:
10714336 - 财政年份:2023
- 资助金额:
$ 77.99万 - 项目类别: