Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse

诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人

基本信息

  • 批准号:
    10313694
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Background: As many as 30% of the ~10 million Americans prescribed long-term opioid therapy (LTOT) are estimated to misuse opioids. Receiving LTOT is associated with opioid-related harms, and misuse leads to an increase in the dose consumed and other risky behavior, further worsening outcomes. However, there is a gap in knowledge on how to identify and treat this patient population particularly when they do not meet diagnostic criteria to be treated by medications for Opioid Use Disorder (OUD). In recent years, guidelines from the Centers for Disease Control and the Veterans Health Administration (VHA) have effected widespread tapering to reduce misuse. Buprenorphine, a medication used for both pain and OUD, may also be effective in reducing opioid-related harms while controlling pain for patients on LTOT with misuse; however, buprenorphine is yet to be tested rigorously in this patient population. Therefore, studies are needed to identify patients on LTOT with misuse and to compare the efficacy of different treatments on patient outcomes. Significance: Chronic pain, LTOT for pain, and opioid misuse are common among Veterans and lead to multiple health-related harms. The VHA has made improving pain care and reducing opioid harms a major priority of clinical initiatives, and this proposal responds to the Health Services Research and Development (HSR&D) Funding Announcement #HX-21-024 to address those opioid-related priorities. By filling a crucial evidence gap, this proposal will significantly impact the way we treat pain and minimize harm for Veterans with opioid misuse. Innovation and Impact: This proposal is innovative and impactful in many ways. First, this project will utilize the unique capabilities of the VHA’s Corporate Data Warehouse (CDW) to develop a novel algorithm to identify patients on LTOT with misuse. If successful, this automated identification process has the potential to be scaled to VHA sites across the country. Second, the comparative effectiveness of different treatments will be determined by an emulated trial, an innovative and efficient study design that can lead to greater generalizability than standard trials, which suffer significantly from selection bias in this area. The treatments being evaluated in the emulated trial are readily available, so if specific treatments are found to improve patient symptoms and reduce adverse outcomes, it will be feasible for Veterans with opioid misuse to access these treatments nationwide. Finally, we will gather feedback from providers and Veterans to understand the best strategies and interventions to scale the identification process and better inform Veterans and providers of evidence-based treatment options. Specific Aims: This project aims to 1) Classify a cohort of patients on LTOT with opioid misuse but without OUD by a) building on a previously developed augmented chart review methodology and b) applying an algorithm to structured data; 2) Conduct an emulated trial to compare the effectiveness of pharmacologic treatment options on patient-centered and patient safety outcomes; and 3) Understand current practices and how to translate our findings into improved care via semi-structured interviews with providers and Veterans. Methodology: The study population is VHA patients on LTOT with opioid misuse 2014-present. The proposal uses mixed quantitative and qualitative methods including augmented structured chart review, large dataset classification using ordinal elastic net regression, emulated trials, and qualitative interviews. Next Steps/Implementation: We expect findings to be of use to VHA leaders, prescribing clinicians, and patients with chronic pain. If successful, the automated identification process from Aim 1 could be scaled to VHA sites, and if treatments evaluated in Aim 2 are effective in improving symptoms and reducing adverse outcomes, these could also be implemented widely. In Aim 3, we will gather Veteran input on how to best implement findings from Aims 1 and Aim 2 into clinical practice in a variety of settings.
背景:在接受长期阿片类药物治疗 (LTOT) 的约 1000 万美国人中,多达 30% 据估计,接受 LTOT 与阿片类药物相关的危害有关,滥用会导致阿片类药物的滥用。 消耗剂量和其他危险行为的增加,进一步恶化了结果然而,存在差距。 了解如何识别和治疗这些患者群体,特别是当他们不符合诊断条件时 阿片类药物使用障碍 (OUD) 的药物治疗标准 近年来,指南提出了。 疾病控制中心和退伍军人健康管理局 (VHA) 已有效地广泛削减 丁丙诺啡(一种用于止痛和 OUD 的药物)也可能有效减少滥用。 然而,丁丙诺啡尚未在控制 LTOT 患者疼痛的同时产生与阿片类药物相关的危害; 因此,需要进行研究来识别接受 LTOT 治疗的患者。 误用并比较不同治疗对患者结果的疗效。 意义:慢性疼痛、LTOT 治疗疼痛和阿片类药物滥用在退伍军人中很常见,并导致 VHA 将改善疼痛护理和减少阿片类药物危害作为一项主要任务。 临床举措的优先事项,该提案响应了卫生服务研究和开发 (HSR&D) 资助公告#HX-21-024 通过填写关键的内容来解决与阿片类药物相关的优先事项。 证据差距,该提案将极大地影响我们治疗疼痛的方式,并最大限度地减少对退伍军人的伤害 阿片类药物滥用。 创新和影响:该提案在很多方面都具有创新性和影响力,首先,该项目将利用。 VHA 企业数据仓库 (CDW) 的独特功能可开发新颖的算法来识别 如果成功,这种自动识别过程有可能被滥用。 其次,将比较不同治疗方法的有效性。 由模拟试验确定,这是一种创新且高效的研究设计,可以带来更大的效果 普遍性高于标准试验,而标准试验在该领域受到选择偏差的严重影响。 在模拟试验中进行评估的数据很容易获得,因此如果发现特定的治疗方法可以改善患者的情况 症状并减少不良后果,滥用阿片类药物的退伍军人可以获得这些 最后,我们将收集医疗服务提供者和退伍军人的反馈,以了解最好的治疗方案。 扩大识别过程并更好地向退伍军人和提供者提供信息的策略和干预措施 基于证据的治疗选择。 具体目标:该项目旨在 1) 对一组接受 LTOT 且阿片类药物滥用但没有滥用的患者进行分类 OUD 通过 a) 建立在先前开发的增强图表审查方法的基础上,以及 b) 应用 算法到结构化数据;2)进行模拟试验来比较药理学的有效性 以患者为中心和患者安全结果的治疗方案;以及 3) 了解当前的实践和 如何通过对提供者和退伍军人的半结构化访谈将我们的发现转化为改善的护理。 方法:研究人群是 2014 年至今滥用阿片类药物且接受 LTOT 的 VHA 患者。 使用混合定量和定性方法,包括增强结构化图表审查、大型数据集 使用序数弹性网络回归、模拟试验和定性访谈进行分类。 后续步骤/实施:我们期望调查结果对 VHA 领导者、人口统计和 如果成功,目标 1 的自动识别过程可以扩展到患有慢性疼痛的患者。 VHA 位点,以及目标 2 中评估的治疗是否能有效改善症状和减少不良反应 在目标 3 中,我们将收集退伍军人关于如何最好地实施的意见。 将目标 1 和目标 2 的发现应用于各种环境的临床实践中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy S B Bohnert其他文献

Protocol for a pragmatic trial of Cannabidiol (CBD) to improve chronic pain symptoms among United States Veterans
大麻二酚(CBD)改善美国退伍军人慢性疼痛症状的实用试验方案
  • DOI:
    10.1186/s12906-024-04558-3
  • 发表时间:
    2024-06-29
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Rachel S. Bergmans;Riley Wegryn;Catherine Klida;Vivian Kurtz;Laura Thomas;David A Williams;Daniel J. Clauw;K. Kidwell;Amy S B Bohnert;K. Boehnke
  • 通讯作者:
    K. Boehnke
Association Between Cost-Sharing and Buprenorphine Prescription Abandonment.
费用分摊与放弃丁丙诺啡处方之间的关联。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Kao;Rena M. Conti;Pooja Lagisetty;Amy S B Bohnert;Usha Nuliyalu;Thuy
  • 通讯作者:
    Thuy

Amy S B Bohnert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy S B Bohnert', 18)}}的其他基金

Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
  • 批准号:
    10563279
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
  • 批准号:
    10595496
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
  • 批准号:
    10700120
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Reducing Non-Medical Opioid Use: An automatically adaptive mHealth Intervention
减少非医疗阿片类药物的使用:自动适应的移动医疗干预措施
  • 批准号:
    9416993
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
  • 批准号:
    10027245
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
  • 批准号:
    10165792
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
  • 批准号:
    10162313
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
  • 批准号:
    9145508
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
  • 批准号:
    8636645
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
  • 批准号:
    8811923
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
RP1 Screen 2 Prevent
RP1 屏蔽 2 预防
  • 批准号:
    10595901
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
  • 批准号:
    10681766
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
  • 批准号:
    10737308
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了