Roles of Gsx factors in basal ganglia development
Gsx 因子在基底神经节发育中的作用
基本信息
- 批准号:10544505
- 负责人:
- 金额:$ 62.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AllelesAmino AcidsAnatomic ModelsAnatomyAnteriorAttention deficit hyperactivity disorderBasal GangliaBehavioralBindingBinding SitesBiochemicalBiochemistryBioinformaticsBiological AssayBrainCell Culture TechniquesCell NucleusChildChildhood Neurological DisorderCognitionCorpus striatum structureCoupledDNADNA BindingDNA-Binding ProteinsDataData AnalysesData SetDevelopmentDiseaseDorsalDystoniaElectrophoretic Mobility Shift AssayElementsEmbryoEnhancersExhibitsFunctional disorderGene ActivationGene ExpressionGene Expression ProfilingGene Expression RegulationGenesGeneticGenetic Enhancer ElementGenetic TranscriptionGenomic approachGenomicsGilles de la Tourette syndromeGoalsGrantHistologicHumanImageIn VitroIntellectual functioning disabilityIntellectual impairmentInterneuronsLateralMagnetic Resonance ImagingMapsMediatingModelingMolecularMorphologyMovementMusNeurologic SymptomsNeuronal DifferentiationNeuronsNonsense CodonObsessive-Compulsive DisorderOutcomePathologicPatientsPatternPhenotypePlayProcessProsencephalonProtein DeficiencyPublishingRegulationRegulator GenesRegulatory ElementReporterRepressionResearchResolutionRoleSiteSpecific qualifier valueSpecificitySymptomsSystemTelencephalonTestingTranscriptional RegulationVariantWorkbehavioral phenotypingcell typedimerfunctional genomicsgene repressiongenetic varianthomeodomainhuman embryonic stem cellin vivoinsightmonomermouse geneticsmouse modelmutantnerve stem cellneural circuitneural patterningneurogenesisnovelolfactory bulbpostnatalprogenitortranscription factortranscriptome sequencing
项目摘要
Normal brain function relies on the correct assembly of neural circuits during development. This process starts with the
patterning of neural progenitors along the dorsal-ventral and anterior-posterior axes to give rise to distinct subtypes of
neurons. A number of key transcription factors (TFs) control the process of neuronal subtype specification. Work in the
mouse has shown that the homeodomain (HD) TF Gsx2 plays essential roles in the patterning and differentiation of
neuronal cell types that arise from progenitors in the lateral ganglionic eminence (LGE) of the embryonic mouse
telencephalon. These progenitors give rise to cell types that include the striatal projection neurons of the basal ganglia
and interneurons in the olfactory bulb, both of which are severely reduced in mouse Gsx2 mutants. Accordingly, human
patient studies identified 2 pathological GSX2 variant alleles in children with serious neurological symptoms, including
dystonia and intellectual disabilities. Consistent with these symptoms, MRI imaging revealed severe basal ganglia
agenesis. One GSX2 variant results in a null allele, however, the other is a missense variant (Q251R) that alters a key
amino acid in the DNA binding HD. We generated a mouse model of this human variant and our initial studies suggest
that the Q>R variant leads to a strong embryonic LGE and basal ganglia phenotype that is morphologically similar to
embryos with Gsx2 null alleles. Furthermore, our preliminary data indicate that this human HD variant alters Gsx2 DNA
binding specificity, and thereby may account for the observed phenotypes. Moreover, we recently determined that Gsx2
binds and regulates target genes via two mechanisms; as a monomer Gsx2 represses gene expression whereas on a subset
of DNA sites cooperative Gsx2 binding to dimer sites appears to facilitate gene expression. Intriguingly, the Dlx HD
TFs, which lie downstream of Gsx2 during LGE progenitor maturation, also bind monomer sites but instead of repressing
they activate gene expression. In this application, we propose to determine how Gsx2 and the Dlx TFs regulate LGE
gene expression during basal ganglia development. To achieve this goal, we will test the following hypotheses in 3
independent specific aims: 1) To test the hypothesis that Gsx2 controls basal ganglia development by mediating distinct
gene regulatory outcomes in a DNA binding site dependent manner. 2) To test the hypotheses that Gsx2 and Dlx TFs
regulate a common set of LGE genes though direct competition for shared enhancer elements. 3) To test the hypothesis
that the GSX2Q251R human variant causes altered DNA binding specificity, and thereby results in the mis-regulation of
LGE gene expression and ultimately basal ganglia agenesis. Our approach will combine the use of mouse genetics and
human forebrain neural stem cell cultures with molecular, biochemical, and genomic approaches to study transcriptional
control of neuronal specification in the developing basal ganglia. The unique expertise of our research team at CCHMC
allows us to take this broad approach, and thus increases our chances to gain a deeper understanding of how Gsx factors
control basal ganglia development as well as to uncover new gene regulatory mechanisms that underlie dysfunction in
certain childhood neurological disorders.
正常的大脑功能依赖于发育过程中神经回路的正确组装。这个过程开始于
神经祖细胞沿着背腹轴和前后轴形成模式,产生不同的亚型
神经元。许多关键转录因子 (TF) 控制神经元亚型规范的过程。工作于
小鼠已证明同源域 (HD) TF Gsx2 在
由胚胎小鼠外侧神经节隆起 (LGE) 祖细胞产生的神经元细胞类型
端脑。这些祖细胞产生细胞类型,包括基底神经节的纹状体投射神经元
和嗅球中的中间神经元,这两个神经元在小鼠 Gsx2 突变体中均严重减少。据此,人类
患者研究在患有严重神经系统症状的儿童中发现了 2 个病理性 GSX2 变异等位基因,包括
肌张力障碍和智力障碍。与这些症状一致,MRI 成像显示严重的基底神经节
发育不全。一种 GSX2 变体导致无效等位基因,然而,另一种是错义变体 (Q251R),它改变了一个关键
DNA结合HD中的氨基酸。我们生成了这种人类变体的小鼠模型,我们的初步研究表明
Q>R 变异导致强烈的胚胎 LGE 和基底神经节表型,其形态学上类似于
具有 Gsx2 无效等位基因的胚胎。此外,我们的初步数据表明,这种人类 HD 变体改变了 Gsx2 DNA
结合特异性,从而可以解释观察到的表型。此外,我们最近确定 Gsx2
通过两种机制结合和调节靶基因;作为单体 Gsx2 抑制基因表达,而在子集上
DNA 位点协同 Gsx2 与二聚体位点的结合似乎促进了基因表达。有趣的是,Dlx HD
在 LGE 祖细胞成熟过程中位于 Gsx2 下游的 TF 也结合单体位点,但不是抑制
它们激活基因表达。在此应用中,我们建议确定 Gsx2 和 Dlx TF 如何调节 LGE
基底神经节发育过程中的基因表达。为了实现这一目标,我们将在 3 年内检验以下假设
独立的具体目标:1)检验 Gsx2 通过介导不同的信号来控制基底神经节发育的假设
以 DNA 结合位点依赖方式产生基因调控结果。 2) 检验 Gsx2 和 Dlx TF 的假设
通过直接竞争共享增强子元件来调节一组常见的 LGE 基因。 3)检验假设
GSX2Q251R 人类变体导致 DNA 结合特异性改变,从而导致错误调节
LGE 基因表达和最终基底神经节发育不全。我们的方法将结合小鼠遗传学和
采用分子、生化和基因组方法培养人前脑神经干细胞来研究转录
控制发育中的基底神经节的神经元规范。 CCHMC 研究团队的独特专业知识
让我们能够采取这种广泛的方法,从而增加我们更深入地了解 Gsx 如何影响因素的机会
控制基底神经节发育以及发现导致功能障碍的新基因调控机制
某些儿童神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH J CAMPBELL其他文献
KENNETH J CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH J CAMPBELL', 18)}}的其他基金
Roles of Gsx factors in basal ganglia development
Gsx 因子在基底神经节发育中的作用
- 批准号:
10339513 - 财政年份:2022
- 资助金额:
$ 62.37万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
9252594 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8039898 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8446434 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular Mechanisms Controlling Formation of Basal Ganglia Circuitry
控制基底神经节回路形成的分子机制
- 批准号:
8049246 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular Mechanisms Controlling Formation of Basal Ganglia Circuitry
控制基底神经节回路形成的分子机制
- 批准号:
8211070 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8240502 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular Mechanisms Controlling Formation of Basal Ganglia Circuitry
控制基底神经节回路形成的分子机制
- 批准号:
9918974 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular Mechanisms Controlling Formation of Basal Ganglia Circuitry
控制基底神经节回路形成的分子机制
- 批准号:
8423053 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8641092 - 财政年份:2010
- 资助金额:
$ 62.37万 - 项目类别:
相似国自然基金
基于D-氨基酸改性拉曼探针的细菌耐药性快速检测
- 批准号:22304126
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
化瘀通络法通过SATB1/JUNB介导“氨基酸代谢网-小胶质细胞极化”调控脑缺血神经功能恢复的机制研究
- 批准号:82374172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
磷酸酶SHP2调控成纤维细胞支链氨基酸代谢在炎症性肠病相关肠纤维化中的作用机制研究
- 批准号:82300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸感应器GCN2调控Beclin-1介导的自噬缓解自身免疫性甲状腺炎的作用研究
- 批准号:82370792
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 62.37万 - 项目类别:
Research Grant
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 62.37万 - 项目类别:
Therapeutic enzyme depletion of L-serine for cancer treatment
L-丝氨酸的治疗性酶消耗用于癌症治疗
- 批准号:
10650618 - 财政年份:2023
- 资助金额:
$ 62.37万 - 项目类别:
Preserving Physical Function in Older Adults with Cancer: Impact of an Optimizing Nutrition Intervention Applied Before and After Surgery
保留患有癌症的老年人的身体功能:手术前后应用优化营养干预的影响
- 批准号:
10643468 - 财政年份:2023
- 资助金额:
$ 62.37万 - 项目类别: