Astrocyte Calcium Signaling in Neuropathic Pain
神经性疼痛中的星形胶质细胞钙信号传导
基本信息
- 批准号:10540684
- 负责人:
- 金额:$ 4.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcuteAcute PainAffectAmericanAnalgesicsAnatomyAnestheticsAnimal BehaviorAnimal ModelArthritisAstrocytesAttentionBasic ScienceBehavioralBehavioral AssayBrainCa(2+)-Transporting ATPaseCalciumCalcium SignalingCaringCell membraneCentral Nervous SystemCommunicationDataDependenceDevelopmentDiseaseEducationElectrophysiology (science)EsthesiaGene ExpressionGeneticGenetic studyHypersensitivityImaging TechniquesImmune responseImmunohistochemistryInflammatory ResponseInstitute of Medicine (U.S.)InterventionKnowledgeLigationMalignant NeoplasmsMammalsMeasurementMechanicsMechanoreceptorsMediatingMethodsModelingMolecularMorphologyMusNerveNervous System PhysiologyNeurogliaNeuronsNociceptionNociceptorsOrganPainPain DisorderPain ResearchPain managementPathogenesisPathway interactionsPatternPeripheralPersistent painPharmacology StudyPhotonsPhysiologicalPlayPosterior Horn CellsPre-Clinical ModelProcessProductivityPublishingReportingReproducibilityResearchResolutionRoleSensorySignal TransductionSiteSkinSpinalSpinal CordSpinal cord injurySpinal cord posterior hornTechniquesTissuesTranslatingTranslationsVertebral columnWorkaddictioncell typecentral sensitizationchronic paindorsal horneffective therapyexperimental studyhistological studiesimaging approachin vivo calcium imaginginsightknock-downminiaturizenerve injurynovelnovel therapeutic interventionoptogeneticspain behaviorpain chronificationpain signalpainful neuropathypharmacologicphase changepre-clinicalpreventprocess improvementrational designreceptorresponsesciatic nervesensory integrationsexside effectspatiotemporaltemporal measurementtranscriptometranscriptome sequencingtwo-photon
项目摘要
PROJECT SUMMARY
Chronic pain is a hallmark of many disease conditions, including nerve and spinal cord injury. Current
mainstays of pain management include analgesics and anesthetics, treatments that are used despite their
uncertain efficacy and known side effects. Safer and more productive approaches for pain management are
urgently needed, but knowledge gaps in basic research have hampered the development and translation of
novel treatments. To accelerate this process an improved understanding of the cellular and molecular basis of
pain signaling is required. The spinal cord is a crucial signaling hub involved in communicating pain-related
signals between peripheral organs and the brain. As the first site of sensory integration within the central
nervous system (CNS), it plays essential roles in central sensitization. Much attention has focused on the
neuronal cell types and circuits that contribute to this process. However, considerably less is known about the
contributions of non-neuronal cells, such as astrocytes. While morphological changes in spinal astrocytes in
relation to onset and progression of chronic pain have been well characterized, little is known about their
dynamic activity patterns and how they relate to neuronal spiking or sex-specific immune responses.
Historically, technical challenges have prevented such measurements in preclinical animal models under
naturalistic conditions. The recent development of two-photon and miniaturized one-photon imaging
approaches has enabled real-time measurement of cellular calcium activity in behaving mammals. This has
provided first insights into how sensory information from mechanoreceptors and nociceptors in the skin acutely
activates dorsal horn neurons and astrocytes. Using these cutting-edge imaging approaches in combination
with computational, genetic, and behavioral techniques, the objective of this proposal is to define how astrocyte
calcium activity changes in relation to neuropathic pain onset and progression, how its targeted manipulation
influences neuronal and non-neuronal responses, and how it alters molecular signaling and animal behavior.
The rationale for the proposed research is that by uncovering cellular and molecular mechanisms that
contribute to pain onset or progression, new analgesic interventions can be devised. Three specific aims will
be pursued: 1) Determine how astrocyte calcium excitation relates to neuropathic pain under naturalistic
conditions; 2) Determine how inhibition of astrocyte calcium excitation modulates normal and aberrant sensory
processing, and 3) Determine molecular pathways involved in astrocyte calcium excitation-mediated
modulation of normal and aberrant sensory processing. In summary, this work will uncover how changes in
astrocyte activity contribute to neuropathic pain on molecular, cellular, and behavioral levels. It will extend
current models of how non-neuronal cells contribute to persistent pain specifically and CNS function broadly.
项目概要
慢性疼痛是许多疾病的标志,包括神经和脊髓损伤。当前的
疼痛管理的主要方法包括镇痛药和麻醉药,尽管它们的效果不佳,但仍使用这些治疗方法
不确定的功效和已知的副作用。更安全、更有效的疼痛管理方法是
迫切需要,但基础研究的知识差距阻碍了其开发和转化
新的治疗方法。为了加速这一过程,加深对细胞和分子基础的理解
需要疼痛信号。脊髓是重要的信号枢纽,参与传递疼痛相关信息
周围器官和大脑之间的信号。作为中枢感觉统合的第一个部位
神经系统(CNS),它在中枢敏化中起着重要作用。很多注意力都集中在
有助于此过程的神经元细胞类型和电路。然而,人们对它的了解却少之又少
非神经元细胞(例如星形胶质细胞)的贡献。虽然脊髓星形胶质细胞的形态变化
慢性疼痛的发生和进展的关系已得到很好的表征,但对其的了解甚少
动态活动模式以及它们与神经元尖峰或性别特异性免疫反应的关系。
从历史上看,技术挑战阻碍了在临床前动物模型中进行此类测量
自然条件。双光子和小型化单光子成像的最新进展
该方法已经能够实时测量行为哺乳动物的细胞钙活性。这有
首次深入了解皮肤中机械感受器和伤害感受器的感觉信息如何敏锐地表达出来
激活背角神经元和星形胶质细胞。结合使用这些尖端成像方法
通过计算、遗传和行为技术,该提案的目标是定义星形胶质细胞如何
钙活性的变化与神经性疼痛的发作和进展有关,及其如何有针对性的操纵
影响神经元和非神经元反应,以及它如何改变分子信号传导和动物行为。
拟议研究的基本原理是通过揭示细胞和分子机制
导致疼痛发作或进展,可以设计新的镇痛干预措施。三个具体目标将
目标:1) 确定自然条件下星形胶质细胞钙兴奋与神经病理性疼痛的关系
状况; 2) 确定星形胶质细胞钙兴奋的抑制如何调节正常和异常的感觉
处理,3) 确定星形胶质细胞钙激发介导的分子途径
正常和异常感觉处理的调节。总之,这项工作将揭示如何改变
星形胶质细胞活性在分子、细胞和行为水平上导致神经性疼痛。它将延长
目前关于非神经元细胞如何具体导致持续性疼痛以及中枢神经系统如何广泛发挥功能的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Alan Nelson其他文献
Nicholas Alan Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Alan Nelson', 18)}}的其他基金
Astrocyte Calcium Signaling in Neuropathic Pain
神经性疼痛中的星形胶质细胞钙信号传导
- 批准号:
10311988 - 财政年份:2021
- 资助金额:
$ 4.25万 - 项目类别:
相似国自然基金
电针调控Nrf2表达抑制巨噬细胞铁死亡进程缓解急性痛风性关节炎疼痛的机制研究
- 批准号:82305369
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
急性牙髓炎疼痛昼夜变化的中枢调控新机制:节律基因Per1/HIF-1α轴调控铁代谢介导小胶质细胞差异性极化
- 批准号:82370986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
前扣带回沉默突触激活介导急性疼痛慢性化的环路和细胞机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
围术期睡眠剥夺激活外周感觉神经元芳香烃受体致术后急性疼痛慢性化
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
从急性到慢性下腰腿痛:默认网络对疼痛的编码作用及其机制的MRI研究
- 批准号:82160331
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别:
Mechanisms underlying mustard gas-induced conjunctival injury and use of lipid mediators as medical countermeasures
芥子气引起的结膜损伤的机制以及脂质介质作为医疗对策的使用
- 批准号:
10882060 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别:
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
- 批准号:
10764417 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别:
Targeting P21 positive senescent cells for alleviating TMJ degeneration
靶向 P21 阳性衰老细胞减轻 TMJ 变性
- 批准号:
10892710 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别:
The Impact of Surgery on Outcomes for Patients taking Medications for Opioid Use Disorder
手术对服用阿片类药物使用障碍患者的结果的影响
- 批准号:
10793072 - 财政年份:2023
- 资助金额:
$ 4.25万 - 项目类别: