Characterization of the gene regulatory network governing the first cell fate decision in mammalian embryonic development
哺乳动物胚胎发育中第一个细胞命运决定的基因调控网络的表征
基本信息
- 批准号:10663784
- 负责人:
- 金额:$ 51.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-12 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureAtlasesBindingBinding SitesBiological AssayCell CountCell Culture TechniquesCell LineCellsChIP-seqChromatinChromatin StructureCoupledCultured CellsDNADNA MethylationData SetDevelopmentDevelopmental GeneDiagnosisEmbryoEmbryologyEmbryonic DevelopmentEpiblastEpigenetic ProcessFutureGene ExpressionGene Expression ProfileGene Expression RegulationGenesGenomic approachHumanHybridsIndividualMaintenanceMammalian CellMapsMeasuresMediatingMethodsModelingMolecularMolecular GeneticsMusNamesNucleic Acid Regulatory SequencesNucleosomesPre-implantation Embryo DevelopmentRNA InterferenceRegenerative MedicineRegulator GenesRegulatory ElementReporterRoleShapesSignal PathwaySpecific qualifier valueStem cell pluripotencyTCF7L2 geneTestingTotipotencyTotipotentTotipotent cellYeastsapoAI regulatory protein-1blastocystcell fate specificationdevelopmental diseaseembryo stage 2embryonic stem cellepigenomicsgene regulatory networkgenome-widegenomic locushistone modificationin vivoin vivo evaluationinsightnovel strategiespluripotencypreventregenerative approachself-renewaltooltranscription factortranscriptome sequencingtranscriptomicstrophoblasttrophoblast stem cell
项目摘要
PROJECT SUMMARY
Although the “master regulators” that maintain the self-renewal of pluripotent embryonic stem cells and
extraembryonic trophoblast stem cells are relatively well understood, little is known about how these
transcription factors are regulated in vivo at early stages of embryogenesis. Molecular genetics and
embryology studies have identified signaling pathways required to direct cells to become trophoblast or
embryonic epiblast, but the transcription factors that activate expression of pluripotency master regulators
(PMRs) or trophoblast master regulators (TMRs) in each cell remain largely unknown. This major gap in our
understanding of early development is due to at least two factors. First, technical barriers prevent the use of
many molecular and genomics approaches in embryos consisting of low cell numbers. Second, there are
significant discrepancies between the totipotent blastomeres of early embryos (where most PMRs and
TMRs begin to be expressed) and cell culture models of totipotent cells. Therefore, a new approach that
combines comprehensive methods for identification of regulators of PMR and TMR expression with
sensitive new methods of testing their functions in vivo is necessary to fill this major gap in our
understanding of the early embryonic gene regulatory network (GRN). We propose three aims to address
this problem. Aim 1 is focused on comprehensive identification of transcription factors regulating PMRs and
TMRs and uncovering their regulatory functions. Aim 2 will generate a lineage-resolved atlas of epigenetic
changes that occur as cells select either the epiblast or trophoblast fate, as well as identify the direct targets
of transcription factors that participate in cell fate specification. In Aim 3, we propose to dissect the
mechanisms by which developmental transcription factors help elicit these epigenetic changes and
generate a model of the totipotent GRN that mediates this decision. Successful completion of these studies
will reshape our understanding of early embryonic gene regulation, as well as specification of epiblast and
trophoblast cell fate.
项目概要
尽管维持多能胚胎干细胞自我更新的“主调节因子”
人们对胚胎外滋养层干细胞的了解相对较好,但对于这些细胞如何发挥作用却知之甚少。
转录因子在胚胎发生的早期阶段在体内受到调节。
胚胎学研究已经确定了指导细胞成为滋养层或滋养层所需的信号通路
胚胎外胚层,但激活多能性主调节因子表达的转录因子
每个细胞中的滋养层主调节因子(PMR)或滋养层主调节因子(TMR)仍然很大程度上未知。
早期发展的认识至少是由于两个因素造成的:第一,技术障碍阻碍了使用。
许多分子和基因组学方法都针对细胞数量较少的胚胎。
早期胚胎的全能卵裂球之间存在显着差异(其中大多数 PMR 和
TMR 开始表达)和全能细胞的细胞培养模型因此,一种新方法。
将鉴定 PMR 和 TMR 表达调节因子的综合方法与
测试其体内功能的敏感新方法对于填补我们的这一重大空白是必要的。
我们提出了三个目标来解决早期胚胎基因调控网络(GRN)的问题。
该问题的目标 1 重点是全面鉴定调节 PMR 的转录因子和
TMR 并揭示其调控功能,目标 2 将生成谱系解析的表观遗传学图谱。
当细胞选择外胚层或滋养层命运以及识别直接目标时发生的变化
在目标 3 中,我们建议剖析参与细胞命运规范的转录因子。
发育转录因子帮助引发这些表观遗传变化的机制
生成一个全能 GRN 模型来介导这一决定,成功完成这些研究。
将重塑我们对早期胚胎基因调控以及外胚层和外胚层规范的理解
滋养层细胞的命运。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS G FAZZIO其他文献
THOMAS G FAZZIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS G FAZZIO', 18)}}的其他基金
varCUT&Tag: A Method for Simultaneous Identification and Characterization of Sequence Variants in Regulatory Elements and Genes
可变剪切
- 批准号:
10662799 - 财政年份:2023
- 资助金额:
$ 51.59万 - 项目类别:
varCUT&Tag: A Method for Simultaneous Identification and Characterization of Sequence Variants in Regulatory Elements and Genes
可变剪切
- 批准号:
10662799 - 财政年份:2023
- 资助金额:
$ 51.59万 - 项目类别:
Characterization of the gene regulatory network governing the first cell fate decision in mammalian embryonic development
哺乳动物胚胎发育中第一个细胞命运决定的基因调控网络的表征
- 批准号:
10364821 - 财政年份:2022
- 资助金额:
$ 51.59万 - 项目类别:
Roles of Chromatin Regulation in Embryonic Stem Cell Self-Renewal
染色质调控在胚胎干细胞自我更新中的作用
- 批准号:
8399699 - 财政年份:2012
- 资助金额:
$ 51.59万 - 项目类别:
Roles of Chromatin Regulation in Embryonic Stem Cell Self-Renewal
染色质调控在胚胎干细胞自我更新中的作用
- 批准号:
8840038 - 财政年份:2012
- 资助金额:
$ 51.59万 - 项目类别:
Roles of Chromatin Regulation in Embryonic Stem Cell Self-Renewal
染色质调控在胚胎干细胞自我更新中的作用
- 批准号:
9264406 - 财政年份:2012
- 资助金额:
$ 51.59万 - 项目类别:
Roles of Chromatin Regulation in Embryonic Stem Cell Self-Renewal
染色质调控在胚胎干细胞自我更新中的作用
- 批准号:
8526487 - 财政年份:2012
- 资助金额:
$ 51.59万 - 项目类别:
Epigenetic control of developmental gene regulation
发育基因调控的表观遗传控制
- 批准号:
10735218 - 财政年份:2012
- 资助金额:
$ 51.59万 - 项目类别:
Epigenetic control of the stem cell gene regulatory network
干细胞基因调控网络的表观遗传控制
- 批准号:
10394283 - 财政年份:2012
- 资助金额:
$ 51.59万 - 项目类别:
Roles of Chromatin Regulation in Embryonic Stem Cell Self-Renewal
染色质调控在胚胎干细胞自我更新中的作用
- 批准号:
8657947 - 财政年份:2012
- 资助金额:
$ 51.59万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional and structural characterization of human auditory cortex using high resolution MRI
使用高分辨率 MRI 表征人类听觉皮层的功能和结构
- 批准号:
10728782 - 财政年份:2023
- 资助金额:
$ 51.59万 - 项目类别:
Genetic Architecture of Pure Alzheimer's Disease and Mixed Pathology
纯阿尔茨海默病和混合病理学的遗传结构
- 批准号:
10712591 - 财政年份:2023
- 资助金额:
$ 51.59万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 51.59万 - 项目类别:
A multi-modal, brain-wide atlas of astrocyte diversity across developmental stages and model species
跨发育阶段和模型物种的星形胶质细胞多样性的多模式、全脑图谱
- 批准号:
10677211 - 财政年份:2023
- 资助金额:
$ 51.59万 - 项目类别: