A reference-free computational algorithm for comprehensive somatic mosaic mutation detection
一种用于综合体细胞嵌合突变检测的无参考计算算法
基本信息
- 批准号:10662755
- 负责人:
- 金额:$ 38.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsAtlasesAutomobile DrivingBehaviorBenignBiologicalCalibrationCatalogingCellsClinicalComputational algorithmComputer softwareDNADNA SequenceDataData AnalysesData DiscoveryData SetDetectionDevelopmentEventExperimental DesignsFrequenciesFundingFutureGene FrequencyGenetic PolymorphismGenomeGoalsHumanIndividualInheritedKnowledgeLengthLinkMalignant NeoplasmsMapsMeasuresMosaicismMutationMutation AnalysisMutation DetectionNoiseOrganPathogenicityPatternPerformancePhaseRare DiseasesRepetitive SequenceResourcesSamplingSensitivity and SpecificitySomatic MutationSpecificityTissuesTrainingUnited States National Institutes of HealthValidationVariantalgorithm developmentanalysis pipelinebasede novo mutationdesigndetection sensitivitydevelopmental diseasedisease diagnostichuman tissueimprovedmosaic variantnovelpredictive modelingtooltool developmenttumorvariant detection
项目摘要
ABSTRACT
Somatic mosaicism (SM), i.e. the presence of cells with somatically acquired mutations, is a driving feature of
cancer and several developmental diseases. However, whereas today we have detailed understanding and
predictive models of benign and pathogenic inherited polymorphisms, germline de novo mutations, and tumor
mutations, we have only limited knowledge of the burden, allele frequency spectrum, clonal patterns, and
mutational signatures of healthy somatic mosaicism. Realizing that such currently missing knowledge is critical
for informing experimental design in future studies of mosaicism’s biological and clinical consequences, NIH is
launching an ambitious initiative, the Somatic Mosaicism across Human Tissues (SMaHT) project to construct a
comprehensive human somatic mosaicism atlas. As part of this initiative, funding announcement RFA-RM-22-
011 calls for Tool Development Projects to develop “approaches that significantly improve the sensitivity,
accuracy, and threshold of detection of all types of somatic variants across the complete genome”. Such
comprehensive detection is currently challenging because somatic mosaicism mutations occur across a wide
range of mutation types and lengths, but the majority of today’s variant detection tools have low sensitivity for
larger, structural events. Furthermore, somatic mutations are typically at very low allele frequency (<1%), but
accurate detection of low-frequency variation today is beyond the capabilities of most tools. We have pioneered
a unique-kmer guided detection approach in our RUFUS tool, designed for germline de novo mutation detection.
This approach focuses on identifying the novel DNA sequence created by a mutation, which allows the same
underlying algorithm, with uniform algorithmic behavior and sensitivity, to be applied across the full range of
mutation types. RUFUS has been validated for accurately detecting germline de novo mutations in large
discovery datasets and rare-disease diagnostic studies. Our preliminary analyses also indicate that RUFUS has
high sensitivity across a full range of somatic mutations. This application proposes to adapt the RUFUS
algorithm for somatic mosaic mutation detection with high sensitivity and specificity across the entire
mutation type, mutation length, and allele frequency spectrum; and thus, substantially contribute to the
construction of a comprehensive mosaicism atlas. To achieve this overall goal, in the first (UG3) phase of
the project we will focus on algorithmic development to improve low-frequency allele detection, empirically
characterize RUFUS’s sensitivity and specificity, and ready the tool for adoption into the SMaHT Network’s
central analysis pipelines. In the second (UH3) phase of the project, we will integrate RUFUS into the central
analysis workflow of the SMaHT consortium; optimize and extend its performance for analyzing the vast SMaHT
somatic mosaicism dataset. We anticipate that RUFUS will contribute substantially to the SMaHT Initiative's goal
to comprehensively map out human somatic mosaicism across individuals, organs, and tissues.
抽象的
体细胞嵌合体(SM),即具有体细胞获得性突变的细胞的存在,是
然而,今天我们已经有了详细的了解和了解。
良性和致病性遗传多态性、种系从头突变和肿瘤的预测模型
突变,我们对负担、等位基因频谱、克隆模式和
认识到目前缺失的知识至关重要。
为了为嵌合现象的生物学和临床后果的未来研究中的实验设计提供信息,NIH
发起一项雄心勃勃的倡议,跨人体组织的体细胞镶嵌(SMaHT)项目,以构建一个
全面的人类体细胞镶嵌图谱作为该计划的一部分,资助公告 RFA-RM-22-
011 呼吁工具开发项目开发“显着提高灵敏度、
整个基因组中所有类型体细胞变异的准确性和检测阈值”。
全面的检测目前具有挑战性,因为体细胞嵌合突变发生在广泛的领域
突变类型和长度的范围,但当今大多数变异检测工具的灵敏度较低
此外,体细胞突变的等位基因频率通常非常低(<1%),但
如今,准确检测低频变化超出了我们开创的大多数工具的能力。
我们的 RUFUS 工具中采用独特的 kmer 引导检测方法,专为种系从头突变检测而设计。
这种方法的重点是识别由突变产生的新 DNA 序列,这允许相同的
底层算法,具有统一的算法行为和灵敏度,可应用于整个范围
RUFUS 已被验证可准确检测大型种系新生突变。
我们的初步分析还表明,RUFUS 已经发现了数据集和罕见疾病诊断研究。
该应用建议对 RUFUS 进行调整。
体细胞嵌合突变检测算法,在整个过程中具有高灵敏度和特异性
突变类型、突变长度和等位基因频谱;因此,对
为了实现这一总体目标,在第一阶段(UG3)构建了一个全面的镶嵌图谱。
该项目我们将重点关注算法开发,以凭经验改进低频等位基因检测
描述 RUFUS 的敏感性和特异性,并准备好将该工具采用到 SMaHT 网络中
在项目的第二阶段(UH3),我们将把 RUFUS 集成到中央分析管道中。
SMaHT 联盟的分析工作流程;优化和扩展其分析庞大 SMaHT 的性能
我们预计 RUFUS 将为 SMaHT Initiative 的目标做出重大贡献。
全面绘制跨个体、器官和组织的人类体细胞镶嵌现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabor T Marth其他文献
Gabor T Marth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabor T Marth', 18)}}的其他基金
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Enhancing clinical diagnostic analysis with a robust de novo mutation detection tool
使用强大的从头突变检测工具增强临床诊断分析
- 批准号:
10608743 - 财政年份:2022
- 资助金额:
$ 38.46万 - 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
- 批准号:
10376642 - 财政年份:2022
- 资助金额:
$ 38.46万 - 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
- 批准号:
10559599 - 财政年份:2022
- 资助金额:
$ 38.46万 - 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
- 批准号:
10027798 - 财政年份:2020
- 资助金额:
$ 38.46万 - 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
- 批准号:
10242178 - 财政年份:2020
- 资助金额:
$ 38.46万 - 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
- 批准号:
10461828 - 财政年份:2020
- 资助金额:
$ 38.46万 - 项目类别:
Longitudinal models of breast cancer for studying mechanisms of therapy response and resistance
用于研究治疗反应和耐药机制的乳腺癌纵向模型
- 批准号:
10228719 - 财政年份:2018
- 资助金额:
$ 38.46万 - 项目类别:
Longitudinal models of breast cancer for studying mechanisms of therapy response and resistance
用于研究治疗反应和耐药机制的乳腺癌纵向模型
- 批准号:
10457293 - 财政年份:2018
- 资助金额:
$ 38.46万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
- 批准号:
10725550 - 财政年份:2023
- 资助金额:
$ 38.46万 - 项目类别:
Quantitative Steady-State and Dynamic Metabolic MRI for Evaluating Patients with Glioma
用于评估神经胶质瘤患者的定量稳态和动态代谢 MRI
- 批准号:
10444826 - 财政年份:2022
- 资助金额:
$ 38.46万 - 项目类别:
Computational tools and resources to study alternative splicing and mRNA isoform variation
研究选择性剪接和 mRNA 亚型变异的计算工具和资源
- 批准号:
10669330 - 财政年份:2022
- 资助金额:
$ 38.46万 - 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
$ 38.46万 - 项目类别:
Automatic Organ Segmentation Tool for Radiation Treatment Planning of Cancers
用于癌症放射治疗计划的自动器官分割工具
- 批准号:
10518374 - 财政年份:2022
- 资助金额:
$ 38.46万 - 项目类别: