Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
基本信息
- 批准号:10534125
- 负责人:
- 金额:$ 6.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2024-09-06
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlveolusAsthmaAttentionAwardBronchiolitisCaringCause of DeathCessation of lifeChronic Obstructive Pulmonary DiseaseClinicalClinical ResearchCommunitiesContrast MediaCustomDetectionDevicesDiagnosisDiffusionDiseaseDisease ProgressionDoseEarly DiagnosisEffectivenessEpidemicEquipmentFDA approvedFaceFatty acid glycerol estersFoodFunctional ImagingFutureGasesGoalsHourHumanImageImaging TechniquesInhalationIonizing radiationIsomerismLungLung diseasesMRI ScansMagnetic Resonance ImagingMammary UltrasonographyModalityModelingMonitorNoble GasesNuclearPathologyPatient-Focused OutcomesPerfusionPersonsPhasePhysicsPhysiologic pulsePneumoniaPopulationPositron-Emission TomographyPreparationProcessProductionPropaneProtonsPulmonary FibrosisRadiation-Induced CancerRelaxationReportingResearchResearch ProposalsResolutionRiskRoentgen RaysSafetyScientistSheepSignal TransductionTechniquesThree-Dimensional ImagingTimeTissuesTrainingVariantViralWaterWomanX-Ray Computed Tomographycancer imagingcareerclinical imagingclinical translationclinically relevantconstrictioncoronavirus diseasecostdesigneffectiveness studyhigh throughput technologyidiopathic pulmonary fibrosisimaging capabilitiesimaging modalityimprovedin vivolung imaginglung injurymagnetic fieldmennext generationnovelpulmonary functionresearch studyscreeningskillssoft tissuetooltreatment responsetumorventilation
项目摘要
PROJECT SUMMARY
Deadly diseases such as COPD, asthma, lung injury, constrictive bronchiolitis, and pulmonary fibrosis affect
>300 million people worldwide and cause ~3 million annual deaths. There is currently no widespread clinical
imaging modality to perform high-resolution functional lung imaging: CT, conventional MRI, and X-ray can only
provide structural images of dense tissues—informing about pathologies like tumors and pneumonia—but
yielding little or no information about lung ventilation, perfusion, alveoli size, etc. This state of affairs contrasts
with cancer imaging, which includes MRI, CT, ultrasound, mammography, PET and others, which collectively
enable early detection (via population screening), diagnoses, and monitoring response to treatment.
Furthermore, CT scans expose the body to ionizing radiation, and thus cannot be performed frequently due to
increased risk associated with cancer-inducing radiation. MRI of hyperpolarized noble gases (e.g. 129Xe) reports
on lung function: ventilation and diffusion. Despite remarkable research breakthroughs in this field demonstrating
the effectiveness and safety of hyperpolarized noble gas MRI to detect a wide range of lung diseases and monitor
response to treatment, the prospects for widespread clinical adaptation of this imaging modality face major
challenges, including (i) the high cost and complexity of the equipment for production of hyperpolarized 129Xe
gas, and (ii) the requirement for a customized MRI scanner capable of 129Xe – note, all FDA-approved MRI
scanners can image only protons. We have developed clinical-scale production of proton-hyperpolarized
propane gas. The process of hyperpolarized propane gas production is remarkably simple, highly efficient and
low-cost. A dose of contrast agents can be prepared in 2 seconds using disposable hyperpolarizer. Moreover,
propane is already FDA-approved for unlimited safe use in foods. Therefore, hyperpolarized propane lung MRI
can obviate the challenges of hyperpolarized 129Xe gas. Under this training award, I will be trained to develop
next-generation 3D ultra-fast lung imaging capability using three spin isomers of hyperpolarized propane gas. I
hypothesize that it may be possible to create highly symmetric hyperpolarized propane spin isomer capable of
retaining hyperpolarized state for ~1 minute in the gas phase at clinically relevant conditions. Sub-second 3D
MRI of these spin isomers can produce background-free functional lung images of gas diffusion and ventilation.
In this project, I will develop clinical-scale production of these spin isomers and their ultrafast MRI in excised
sheep lungs with the goal of systematic relaxation mapping for future in vivo studies. The clinical translation of
this new fast and low-cost imaging modality will revolutionize pulmonary imaging and pulmonary care of a wide
range of lung diseases—this is my long-term career goal.
项目概要
慢性阻塞性肺病、哮喘、肺损伤、缩窄性细支气管炎和肺纤维化等致命疾病影响
全球超过 3 亿人,每年造成约 300 万人死亡,目前尚无广泛的临床案例。
进行高分辨率功能性肺部成像的成像方式:CT、常规 MRI 和 X 射线只能
提供致密组织的结构图像——了解肿瘤和肺炎等病理情况——但是
产生很少或没有关于肺通气、灌注、肺泡大小等的信息。这种情况形成对比
癌症成像,包括 MRI、CT、超声波、乳房 X 线摄影、PET 等,这些统称为
实现早期检测(通过人群筛查)、诊断和监测治疗反应。
此外,CT扫描使身体暴露在电离辐射下,因此不能频繁进行,因为
超极化惰性气体(例如 129Xe)的 MRI 报告表明,与致癌辐射相关的风险增加。
肺功能:通气和扩散尽管该领域取得了显着的研究突破。
超极化惰性气体 MRI 检测和监测多种肺部疾病的有效性和安全性
对治疗的反应,这种成像方式广泛临床适应的前景面临重大挑战
挑战,包括(i)超极化129Xe生产设备的高成本和复杂性
气体,以及 (ii) 对能够达到 129Xe 的定制 MRI 扫描仪的要求 – 请注意,所有 FDA 批准的 MRI
扫描仪只能对质子成像我们已经开发出临床规模的质子超极化生产。
超极化丙烷气体的生产过程异常简单、高效且高效。
使用一次性超极化器可在 2 秒内制备一剂造影剂。
丙烷已获得 FDA 批准可在食品中无限安全使用,因此,超极化丙烷肺 MRI 是可行的。
可以消除超极化129Xe气体的挑战 在这个培训奖下,我将接受培训以开发。
使用超极化丙烷气体 I 的三种自旋异构体的下一代 3D 超快速肺部成像功能。
培养出有可能产生高度对称的超极化丙烷自旋异构体
在临床相关条件下,在气相中保持超极化状态约 1 分钟。
这些自旋异构体的 MRI 可以生成气体扩散和通气的无背景功能性肺部图像。
在这个项目中,我将开发这些自旋异构体的临床规模生产及其在切除中的超快 MRI
羊肺的目标是为未来的体内研究提供系统的松弛图谱。
这种新的快速且低成本的成像方式将彻底改变广泛的肺部成像和肺部护理
一系列肺部疾病——这是我的长期职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuwandi M Ariyasingha U W其他文献
Nuwandi M Ariyasingha U W的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuwandi M Ariyasingha U W', 18)}}的其他基金
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10314284 - 财政年份:2021
- 资助金额:
$ 6.97万 - 项目类别:
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10687214 - 财政年份:2021
- 资助金额:
$ 6.97万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 6.97万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 6.97万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 6.97万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 6.97万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 6.97万 - 项目类别: