The Danger Model, and how tissues control Immunity

危险模型以及组织如何控制免疫力

基本信息

项目摘要

We used six different experimental set-ups 1) BIODEFENSE AND NEONATAL IMMUNITY Although there is a concerted national effort to find vaccines for potential bio-terrorism agents, little is being done to protect the nation's infants. Most adult vaccines do not work for infants less than 6mo old, and many do not work for babies < 1yr. Because we cannot leave our children behind, we have been analyzing the immune responses of newborns. A) The inhibitory effect of maternal antibodies: In 1996 we showed that newborn mice were immunologically competent (contrary to common opinion), as long as they were properly immunized (Science 271:1723-1726). We have now been looking at a second myth, namely that the presence of maternal antibody inhibits newborn responses. in the last two years, we found that neonatal mice respond perfectly well to the model antigen Ovalbumin (OVA), even if they have received passive anti-OVA antibody from their mothers. The immunity in babies from immunized mothers lasts for at least 18 months, and does not fade more rapidly than that of babies from control mothers. Thus, in mice, maternal antibodies are not inhibitory. B) anthrax: To see if our results with the model antigen, OVA, hold for real infections, we studyied the response to Anthrax. In preliminary studies to find the right vaccine dose, we found (astonishingly!) that the current test for adult immunity (neutralizing antibody) is misleading. Mice immunized with Anthrax protective antigen (PA) in adjuvant make high titers of antibody (as seen on ELISA tests) but no neutralizing antibody. Yet they are completely protected from challenge with live Anthrax. This result may radically change how to vaccinate individuals and will also change how we analyze the responses of newborn mice. Further, we found that neonates immunized with Anthrax PA in adjuvant are protected from challenge, though some of them make no detectable antibody at all, suggesting that non-antibody protective mechanisms exist. C) Neonatal responses to Measles: having found that neonatal mice respond perfectly well to both OVA and Anthrax, we turned to the measles vaccine to ask why neonatal humans do not respond well. We have been studying the vaccine variant of the Edmonston strain of Measles to see what properties make it a poor vaccine for children. We found that the CD46 isotypes expressed by cord blood are not the same as those expressed by adults, and that the neonatal isoforms are not conducive to infection by the vaccine Measles strain. 2) CD4 T CELLS CLEAR TUMORS We found that CD4 T cells can be better at clearing tumors than CD8 cells. Against six out of six tumors, from five different tissues, CD4 effectors were more potent than CD8s. Searching for the mechanism, we found that the CD4 T cells partner with NK cells. We are now studying this partnership to determine which cell does what. Thus far, it seems that IFN-gamma production by the CD4 T cells is involved, and that tumor infiltrating macrophages can be educated by CD4 T cells to kill tumor cells. (Perez-Diez, et al (2007) CD4 Cells Can Be More Efficient at Tumor Rejection Than CD8 Cells Blood 109:5346 4) DENDRITIC CELLS & IL-12p70 It is currently thought that dendritic cells become exhausted within 24 hours of stimulation by LPS. We have found that this is incorrect. The dendritic cells, while resistant to restimulation by LPS, can produce IL-12p70 when re-stimulated by activated T cells. We found that TH1 cells and TH0 cells can stimulate this production of IL-12p70 while TH2 cells cannot. The 'exhausted' dendritic cells make a host of cytokines and chemokines not made by freshly stimulated dendritic cells. Thus dendritic cells are not in control of immune effector class, but instead relay signals from the cells with which they are in contact. 5) IMMUNITY & HEALING: The Danger model led us to the view that tissues influence the effector class of immunity in order to prevent immune-mediated local damage. To determine whether wounded tissues are affected by the immune system, we punched small holes in the ears of mice and measured the healing rate. We found that young mice heal slowly while older mice, surprisingly, quickly regenerate both the epithelium and cartilage so well that there is eventually no visible scar. Histology suggested that the amount of inflammation is different between the two ages of mice. Thus we tested NSAIDs and found that they greatly inhibit the regeneration, while croton oil enhances it. We tested many mutant strains of mice and found that there is essentially no difference in the regenerative capacity of middle aged mice of most strains. 6) TOLERANCE TO LATE-APPEARING ANTIGENS: One of the problems with the self-non-self model is that it does not account for tolerance to antigens that appear late in life, such as the milk proteins of lactating mothers (eg. alpha lactalbumin, beta lactoglobulin, casein etc.). To see if tolerance to these proteins is established in the thymus, or perhaps by fetal exposure during pregnancy or neonatal exposure during lactation, we have been using a model system in which we can obtain adult animals that carry a particular milk-protein gene but which have not previously encountered the protein, either across the placenta, or by drinking the milk as babies. HUMAN ALPHA LACTABLUMIN KNOCK-IN MICE: We obtained mice that had their own alpha lactalbumin (mALAC) genes replaced with the human allele (hALAC), and bred them for 22 generations to B10.BR. To make experimental animals, we bred normal B10.BR females to B10.BR hALAC males. The F1 progeny carry both human and mouse alleles of ALAC but have only been exposed to mALAC from their mothers. When immunized to hALAC after weaning but before puberty, these mice (both males and females) made good T cell and antibody responses. Thus they were not rendered tolerant by thymic expression. When bred, the immunized females showed no autoimmune reactions to their mammary tissue. Neither did the levels of antibodies to hALAC drop or the subclasses of antibodies change. Using pep-scan, we found that the carriers, which make good responses, are nveretheless somewhat tolerant, as they do not respond to a dominant peptide that stimulates non-carrier mice quite well. We made T-cell hybridomas from immunized normal female mice, to make TCR Tg mice from these to follow the fate of immunized self-reactive T cells as the mice lactate through several pregnancies. 7) THE EFFECT OF COMMENSAL BACTERIA ON THE HEALTH OF INTESTINAL TISSUE: we are studying, by microarray analysis of lazer microdissected sections of small intestine, the response of various tissues (eg lamina propria, epithelium, crypts) to the presence or absence of commensal bacteria. Preliminary data suggest that many more cells produce anti-microbial peptides than previously thought.
我们使用了六个不同的实验设置 1)生物反应和新生儿免疫,尽管有一致的国家努力寻找潜在的生物恐怖主义疫苗,但几乎没有采取任何措施来保护国家的婴儿。大多数成年疫苗不适用于小于6MO老的婴儿,许多疫苗不适用于<1岁的婴儿。 因为我们不能将孩子抛在后面,所以我们一直在分析新生儿的免疫反应。 a)孕产妇抗体的抑制作用:1996年,我们表明新生小鼠在免疫学上是有能力的(与普通意见相反),只要它们得到适当的免疫接种(科学271:1723-1726)。现在,我们一直在研究第二个神话,即母体抗体的存在抑制了新生儿反应。在过去的两年中,我们发现新生儿小鼠对模型抗原椭圆蛋白(OVA)的反应也很好,即使他们从母亲那里收到了被动抗OVA抗体。免疫母亲的婴儿的免疫力至少持续了18个月,并且比对照母亲的婴儿的衰减速度差不多。因此,在小鼠中,母体抗体不是抑制性的。 b)炭疽:要查看我们与模型抗原OVA是否持有实际感染的结果,我们研究了对炭疽的反应。在初步研究以发现正确的疫苗剂量时,我们发现(令人惊讶的是!),当前对成人免疫力(中和抗体)的测试具有误导性。辅助剂中用炭疽保护抗原(PA)免疫的小鼠可使抗体的高滴度(如在ELISA测试中看到),但没有中和抗体。然而,它们完全受到活炭疽挑战的保护。该结果可能会从根本上改变如何接种疫苗,还将改变我们分析新生小鼠的反应的方式。此外,我们发现在佐剂中用炭疽PA免疫的新生儿免受挑战,尽管其中一些根本没有可检测到的抗体,这表明存在非抗体保护机制。 c)新生儿对麻疹的反应:发现新生儿小鼠对卵子和炭疽病的反应很好,我们转向麻疹疫苗,询问为什么新生儿人反应不佳。 我们一直在研究埃德蒙斯顿麻疹菌株的疫苗变体,以查看哪些特性使其成为儿童的疫苗不良。我们发现,由脐带血表达的CD46同种型与成年人表达的CD46同种型不同,并且新生儿同工型不利于疫苗麻疹菌株感染。 2)CD4 T细胞清除肿瘤,我们发现CD4 T细胞在清除肿瘤方面比CD8细胞更好。从五个不同组织中的六个肿瘤中的六个中,CD4效应子比CD8更有效。在寻找该机制时,我们发现CD4 T细胞与NK细胞合作。我们现在正在研究这种合作伙伴关系,以确定哪个细胞可以做什么。 到目前为止,CD4 T细胞的IFN-GAMMA产生似乎涉及,并且CD4 T细胞可以教育肿瘤浸润巨噬细胞以杀死肿瘤细胞。 (Perez-Diez等人(2007)CD4细胞在肿瘤排斥下的效率比CD8细胞血液更有效109:5346 4)树突状细胞和IL-12P70目前认为树突状细胞在LPS刺激后的24小时内筋疲力尽。我们发现这是不正确的。当通过活化的T细胞重新刺激时,树突状细胞虽然可以抗LPS抗性,但可以产生IL-12P70。我们发现Th1细胞和Th0细胞可以刺激IL-12P70的产生,而Th2细胞不能刺激IL-12P70。 “耗尽的”树突状细胞会产生许多细胞因子和趋化因子,而不是由新鲜刺激的树突状细胞制成。 因此,树突状细胞不能控制免疫效应子类别,而是从与之接触的细胞中继电器信号。 5)免疫与康复:危险模型使我们认为组织会影响效应子类别的免疫类别,以防止免疫介导的局部损害。为了确定受伤的组织是否受到免疫系统的影响,我们在小鼠耳朵的耳朵中打孔了小孔,并测量了愈合率。我们发现,年轻的小鼠在年龄较大的小鼠中慢慢愈合,令人惊讶的是,迅速再生的上皮和软骨很好,以至于最终没有可见的疤痕。 组织学表明,两个小鼠年龄之间的炎症量有所不同。 因此,我们测试了NSAID,发现它们极大地抑制了再生,而Croton Oil促进了它。我们测试了许多小鼠突变菌株,发现大多数菌株的中年小鼠的再生能力基本上没有差异。 6)对晚期抗原的耐受性:自我不自我模型的问题之一是,它不能说明对生命后期出现的抗原的耐受性,例如泌乳母亲的牛奶蛋白(例如,脂肪乳蛋白,β乳糖蛋白,β乳脂蛋白,蛋白质等)。要查看对这些蛋白质的耐受性是在胸腺中建立的,还是在泌乳期间通过胎儿暴露在胎儿暴露期间,我们一直在使用一种模型系统,在该模型中,我们可以获得携带特定牛奶蛋白质基因的成年动物,但以前既没有携带蛋白质,又不遇到过胎盘,或者通过饮用牛奶。 人α乳la肌蛋白敲入小鼠:我们获得了其自己的α乳蛋白(MALAC)基因的小鼠,被人类等位基因(HALAC)取代,并将它们育成22代的小鼠至B10.BR。 为了制造实验动物,我们将正常的B10.br雌性饲养到B10.BR HALAC雄性中。 F1后代同时携带Alac的人类和小鼠等位基因,但仅从母亲身上暴露于Malac。当断奶后但在青春期之前免疫到HALAC时,这些小鼠(雄性和女性)产生了良好的T细胞和抗体反应。因此,它们不是通过胸腺表达耐耐受的。饲养后,免疫女性对其乳腺组织没有自身免疫反应。 HALAC下降的抗体水平也没有变化。 使用PEP扫描,我们发现表现出良好反应的携带者在某种程度上具有宽容性,因为它们对刺激非载体小鼠的主要肽没有反应。 我们从免疫的正常雌性小鼠中制作了T细胞杂交瘤,使TCR TG小鼠从它们的命运中遵循免疫自反应性T细胞的命运,因为小鼠通过几次妊娠乳酸。 7)共生细菌对肠道组织健康的影响:我们正在研究,通过微阵列分析小肠的Lazer微解析切片,各种组织的反应(例如,普罗普里亚膜,上皮,隐窝)对存在或不存在相对细菌的反应。 初步数据表明,许多细胞产生的抗菌肽比以前想象的要多。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The ability of natural tolerance to be applied to allogeneic tissue: determinants and limits.
  • DOI:
    10.1186/1745-6150-2-10
  • 发表时间:
    2007-04-16
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Chan WF;Perez-Diez A;Razavy H;Anderson CC
  • 通讯作者:
    Anderson CC
Microarrays for cancer diagnosis and classification.
Are major histocompatibility complex molecules involved in the survival of naive CD4+ T cells?
  • DOI:
    10.1084/jem.20030963
  • 发表时间:
    2003-10-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grandjean I;Duban L;Bonney EA;Corcuff E;Di Santo JP;Matzinger P;Lantz O
  • 通讯作者:
    Lantz O
Brief antigenic stimulation generates effector CD8 T cells with low cytotoxic activity and high IL-2 production.
短暂的抗原刺激会产生具有低细胞毒活性和高 IL-2 产量的效应 CD8 T 细胞。
Friendly and dangerous signals: is the tissue in control?
  • DOI:
    10.1038/ni0107-11
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
    30.5
  • 作者:
    Matzinger, Polly
  • 通讯作者:
    Matzinger, Polly
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

POLLY C MATZINGER其他文献

POLLY C MATZINGER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('POLLY C MATZINGER', 18)}}的其他基金

The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
  • 批准号:
    8745319
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
  • 批准号:
    8336078
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
  • 批准号:
    7964305
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
  • 批准号:
    10697665
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
Danger 1: initiating and stopping immune responses
危险一:启动和停止免疫反应
  • 批准号:
    8336144
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
  • 批准号:
    10932746
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
  • 批准号:
    10014042
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
The Danger Model, and how tissues control Immunity
危险模型以及组织如何控制免疫力
  • 批准号:
    7301882
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
T CELL TOLERANCE AND ACTIVATION
T 细胞耐受和激活
  • 批准号:
    6288885
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:
The Danger Model And Immunity
危险模型和免疫力
  • 批准号:
    6677096
  • 财政年份:
  • 资助金额:
    $ 246.9万
  • 项目类别:

相似国自然基金

穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
  • 批准号:
    82303680
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
  • 批准号:
    32371440
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
  • 批准号:
    32371518
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
  • 批准号:
    82341040
  • 批准年份:
    2023
  • 资助金额:
    100 万元
  • 项目类别:
    专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
  • 批准号:
    82341036
  • 批准年份:
    2023
  • 资助金额:
    110 万元
  • 项目类别:
    专项基金项目

相似海外基金

Individualized medicine to predict and prevent chemotherapy-related heart failure
预测和预防化疗相关心力衰竭的个体化药物
  • 批准号:
    10714111
  • 财政年份:
    2023
  • 资助金额:
    $ 246.9万
  • 项目类别:
Regulatory Mechanisms Addressing Diabetic Vasculopathy
解决糖尿病血管病变的调节机制
  • 批准号:
    10718850
  • 财政年份:
    2023
  • 资助金额:
    $ 246.9万
  • 项目类别:
Targeting ATG4B to Treat Glioblastoma
靶向 ATG4B 治疗胶质母细胞瘤
  • 批准号:
    10605245
  • 财政年份:
    2022
  • 资助金额:
    $ 246.9万
  • 项目类别:
Brain Networks of Turning Performance with Aging and Stroke
衰老和中风影响转向性能的大脑网络
  • 批准号:
    10536898
  • 财政年份:
    2022
  • 资助金额:
    $ 246.9万
  • 项目类别:
Targeting ATG4B to Treat Glioblastoma
靶向 ATG4B 治疗胶质母细胞瘤
  • 批准号:
    10453325
  • 财政年份:
    2022
  • 资助金额:
    $ 246.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了