The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
基本信息
- 批准号:8336078
- 负责人:
- 金额:$ 131.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AdjuvantAdultAntibioticsAntibodiesAntibody FormationAntigen-Presenting CellsAntigensAreaAutoimmunityB-LymphocytesBacteriaBiochemical PathwayBone MarrowCell surfaceCellsCervical lymph node groupCollectionCommunicationDefectDendritic CellsDevelopmentDown-RegulationEducationEnvironmentEpithelial CellsEscherichia coliExhibitsFusobacterium nucleatumGATA4 transcription factorGene ExpressionGenesGenotypeGerm-FreeGingivitisGnotobioticGreater sac of peritoneumHIVHealedHealthHomeostasisHumanImmuneImmune responseImmune systemImmunityImmunizationImmunoglobulin AImmunologistInflammatoryInterferon Type IIInterferonsInterleukin-10Interleukin-5Interleukin-6IntestinesLeftLeptinLiverLocationLymphoid CellMandibleMediatingMesenteryMetabolicMetabolic syndromeMetabolismMicroarray AnalysisMitochondriaModelingMusNatural Killer CellsNatural regenerationNeonatalOralOral cavityOrganOrganismParasitologyPathway AnalysisPatientsPeritonealPeritoneumPhenotypePopulationPorphyromonas gingivalisProcessProductionProtocols documentationRNAReactionResearchRoleRouteSamplingSourceSpleenSublingual drug administrationSystemT-LymphocyteTestingThymus GlandTissuesTongueTransforming Growth Factor betaTumor Necrosis Factor-alphaUp-RegulationVaccinesWorkanthrax protective factoranthrax toxincancer transplantationcommensal microbescytokinefightinggastrointestinal epitheliumhealingin vivoinfancyjejunumkillingslipid metabolismlymph nodesmucosal vaccineneonateneutralizing antibodyoral bacteriaoral cavity epitheliumoral tissuepathogenresponsevector vaccine
项目摘要
To study tissue-mediated control of immunity, we have been using 5 different systems.
1. DENDRITIC CELLS FROM VARIOUS LOCATIONS AS ANTIGEN PRESENTING CELLS: We are studying the effect of different environments on the activation of naive and previously activated T cells. we had previously shown that dendritic cells isolated from mesenteric lymph nodes (which drain the gut) tend to induce naive T cells to produce Il4, IL10 and TGFbeta, while dendritic cells grown from bone marrow or isolated from spleen tend to induce interferon gamma (IFNg) and tumor necrosis factor (TNF). We are now studying the effect of offering antigen in different locations in vivo, and of stimulating T cells in various organs in organospecific culture systems.
2. ANTIGENS GIVEN BY DIFFERENT ROUTES GIVE DIFFERENT RESPONSES: we used the protective antigen (PA) of Anthrax as antigen, and gave it either subcutaneously (SQ) or intraperitoneally (IP). when given SQ, the PA immunizes and leads to protection from anthrax toxin challenge. When given IP, it does not. In contrast, the same antigen given with complete adjuvant immunizes by both routes. The responses, however are different in that PA given with adjuvant gives a response with high levels of Antibodies, as seen by ELIZA, but no or few neutralizing antibodies. Nevertheless, the immunized mice are protected from challenge with anthrax toxin.
3. THE GUT:
a. THE EFFECT OF ANTIBIOTICS ON THE HEALTH OF INTESTINAL TISSUE. Mice were given a cocktail of antibiotics for several weeks and then jejunum tissue was assessed by microarray analysis. We found that antibiotics cause expression changes in a number of genes expressed by normal gut epithelium. Some of these are indirect effects due to the loss of commensal bacteria. Others, however, are direct effects on jejunal tissue, as the changes were also found in antibiotic-treated germ free mice. These direct effects were mostly concentrated in mitochondrial functions.
b. THE EFFECT OF B CELLS ON THE HOMEOSTASIS OF THE GUT. B cells make up a large proportion of the lymphoid cells in the gut. We have found that their absence leads to a defect in fat metabolism and leptin levels. Gene network analysis showed that there are two intertwined gene networks that are inversely correlated one controlling metabolic processes and a second controlling immune processes (mostly IFN dependent). In the absence of B cells the intestinal epithelial cells upregulate their immune network and downregulate the metabolic one. This occurs only in the presence of gut flora, as it does not occur in gnotobiotic mice. Studies in which we transferred the microbiota from B cell KO and WT mice to germ free recipients showed that the genotype of the host, rather than the source of the bacteria was critical. Thus B cells have a strong effect on normal gut function. The B cell effect is mediated by IgA, as IgA KO mice exhibit nearly the same changes in gene expression as B cell KO mice. Further, many of the genes in the metabolic network are regulated by the transcription factor, GATA4. CVID patients and some HIV patients that have metabolic syndrome, have a similar gene expression phenotype to the B cell KO mice, including changes in expression of GATA4-dependent genes.. We conclude that the gut epithelium can upregulate its own immunity when the immune system is deficient, and that the upregulation in immunity is accompanied by a downregulation in metabolic activity.
4. THE MOUTH:
a. THE EFFECT OF COMMENSAL ORGANISMS ON NORMAL MOUTH DEVELOPMENT: In order to evaluate the role of oral bacteria in the homeostasis of oral tissues, oral bacterial samples and oral tissues (tongue, mandible, cervical lymph nodes) from germfree vs. conventional mice have been under collection. The RNA samples of oral epithelia obtained from 6 month old mice are under RNA microarray analysis.
b. FUSOBACTERIUM NUCLEATUM AS A POTENTIAL VACCINE VECTOR: In order to determine the potential of Fusobacterium nucleatum (a normal human commensal bacterium) as a mucosal vaccine carrier, we are characterizing the adaptive immune responses to F. nucleatum after sublingual administration. Early results show that both IgA and IgG2a antibody responses and Th1/Th17 T cell cytokine profiles are elicited. We are currently working on optimizing the immunization protocol.
c. P gingivalis (the bacterium that causes gingivitis) stimulates dendritic cells to produce IL-5 and not IL12p70. E coli, in contrast, stimulate TNF and IL-6 production. We are studying the interactions of these two bacteria and their effects on the stimulation of dendritic cells. We found that P gingivalis does not activate dendritic cells to produce inflammatory cytokines, though it does induce the upregulation of cell surface costimulatory molecules. We are currently deciphering the mechanisms used by the bacterium to mediate its DC-activating activity. Early results show that the intact bacterium does not behave like the isolated LPS.
5. THE PERITONEAL CAVITY
We found that the peritoneal cavity harbors a particular subset of NK cells. Although these NK cells share some markers with immature splenic NK cells, and some other markers with NK cells found in the liver, they do not entirely overlap with either population. They produce IFNgamma, and very few other cytokines, and are able to kill standard NK targets. When whole spleen cells are injected into the peritoneal cavity, the T cells are able to leave, but the NK cells do not. When injected intravenously, only a subset of splenic NK cells are able to enter the peritoneal cavity, and these change their phenotype to become typical peritoneal NK cells. Thus the peritoneum seems to preferentially allow the entry and differentiation of a resident population of NK cells that does not exit.
为了研究组织介导的免疫控制,我们一直在使用5种不同的系统。
1。来自各个位置的树突状细胞作为抗原呈递细胞:我们正在研究不同环境对天真和先前活化的T细胞激活的影响。我们先前已经表明,从肠系膜淋巴结(耗尽肠道)倾向于诱导天真的T细胞产生IL4,IL10和TGFBETA的树突状细胞,而从骨髓中生长的树突状细胞或从脾脏中分离出来的树突状细胞倾向于诱导Interferon Gamma(IFNG)和Tumor necrosis(TNF)。 现在,我们正在研究体内不同位置提供抗原的作用,以及在器官特定培养系统中刺激各种器官中T细胞的效果。
2。由不同途径给出的抗原给出了不同的反应:我们将炭疽的保护性抗原(PA)用作抗原,并皮下(sq)或腹膜内(IP)给予它。 当给定SQ时,PA会免疫并导致免受炭疽毒素挑战的保护。 当给定IP时,它没有。相比之下,两条路线的完全佐剂给予相同的抗原。 然而,这些反应是不同的,因为佐剂给出了高水平的抗体的响应,如Eliza所见,但没有中和抗体。 然而,免疫小鼠免受炭疽毒素的挑战。
3。肠道:
一个。 抗生素对肠道组织健康的影响。 给小鼠加入抗生素鸡尾酒几周,然后通过微阵列分析评估空肠组织。 我们发现抗生素会导致正常肠上皮表达的许多基因的表达变化。 其中一些是由于共生细菌的丧失而间接影响。 然而,其他则是对空肠组织的直接影响,因为在抗生素治疗的无胚胎小鼠中也发现了这些变化。 这些直接作用主要集中在线粒体功能上。
b。 B细胞对肠道稳态的影响。 B细胞占肠道中的淋巴样细胞的很大一部分。 我们发现它们的缺失导致脂肪代谢和瘦素水平的缺陷。 基因网络分析表明,有两个相互缠结的基因网络是呈负相关的一个控制代谢过程和第二个控制免疫过程(主要取决于IFN)。 在没有B细胞的情况下,肠上皮细胞上调其免疫网络并下调代谢网络。 这仅在肠道菌群的存在下发生,因为它不会发生在gnotobiotic小鼠中。我们将微生物群从B细胞KO和WT小鼠转移到无细菌受体的研究表明,宿主的基因型,而不是细菌的来源至关重要。 因此,B细胞对正常肠道功能具有很强的影响。 B细胞效应由IgA介导,因为IgA KO小鼠的基因表达与B细胞KO小鼠的基因表达几乎相同。 此外,代谢网络中的许多基因受转录因子GATA4调节。 CVID患者和一些患有代谢综合征的HIV患者具有与B细胞KO小鼠相似的基因表达表型,包括GATA4依赖性基因表达的变化。我们得出的结论是,肠道上皮可以上调其自身的免疫,而当免疫系统不足,并且在免疫中的上调是由免疫伴随着伴随的活动。
4。嘴:
一个。 共生生物对正常口腔发育的影响:为了评估口服细菌在口腔组织,口腔细菌样品和口腔组织(舌,下颌骨,宫颈淋巴结)中的作用。从6个月大的小鼠中获得的口服上皮的RNA样品在RNA微阵列分析下。
b。 核细菌核作为潜在的疫苗载体:为了确定镰刀菌核(一种正常的人类共生细菌)作为粘膜疫苗携带者的潜力,我们正在表征sublingual施用后对F. nucleatum的适应性免疫反应。早期结果表明,引起了IgA和IgG2a抗体反应以及Th1/Th17 T细胞因子谱。我们目前正在努力优化免疫协议。
c。 P牙龈(导致牙龈炎的细菌)刺激树突状细胞产生IL-5,而不是IL12P70。 相比之下,E大肠杆菌刺激TNF和IL-6产生。 我们正在研究这两种细菌的相互作用及其对树突状细胞刺激的影响。 我们发现,牙龈牙龈不会激活树突状细胞以产生炎症性细胞因子,尽管它确实诱导了细胞表面共刺激分子的上调。 我们目前正在解密细菌用于介导其DC激活活性的机制。 早期结果表明,完整的细菌的行为不像孤立的LP。
5。腹膜腔
我们发现腹膜腔具有特定的NK细胞子集。 尽管这些NK细胞与未成熟的脾脏NK细胞共享一些标记,以及在肝脏中发现的一些NK细胞的其他标记,但它们并不完全与任何一个人群重叠。 它们产生IFNGAMMA,几乎没有其他细胞因子,并且能够杀死标准的NK靶标。 当将整个脾细胞注入腹膜腔时,T细胞就能离开,但NK细胞却没有。 当静脉注射时,只有一部分脾脏NK细胞能够进入腹膜腔,它们会改变其表型,成为典型的腹膜NK细胞。 因此,腹膜似乎优先允许不退出的NK细胞的居民群体进入和分化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
POLLY C MATZINGER其他文献
POLLY C MATZINGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('POLLY C MATZINGER', 18)}}的其他基金
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
- 批准号:
7964305 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
- 批准号:
8745319 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
- 批准号:
10697665 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
Danger 1: initiating and stopping immune responses
危险一:启动和停止免疫反应
- 批准号:
8336144 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
- 批准号:
10932746 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
The Danger Model 2: how tissues control Immunity
危险模型 2:组织如何控制免疫力
- 批准号:
10014042 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
The Danger Model, and how tissues control Immunity
危险模型以及组织如何控制免疫力
- 批准号:
7301882 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
Danger 1: initiating and stopping immune responses
危险一:启动和停止免疫反应
- 批准号:
8745380 - 财政年份:
- 资助金额:
$ 131.25万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Systems biological assessment of innate responses to vaccination
对疫苗接种先天反应的系统生物学评估
- 批准号:
10584566 - 财政年份:2022
- 资助金额:
$ 131.25万 - 项目类别:
Systems biological assessment of innate and adaptive immunity to vaccination
对疫苗接种的先天性和适应性免疫的系统生物学评估
- 批准号:
10419275 - 财政年份:2022
- 资助金额:
$ 131.25万 - 项目类别:
Understanding the role of aromatic amino acid derived metabolic toxins in neuroinflammation
了解芳香氨基酸衍生的代谢毒素在神经炎症中的作用
- 批准号:
10446431 - 财政年份:2022
- 资助金额:
$ 131.25万 - 项目类别:
Systems biological assessment of T cell responses to vaccination
T 细胞对疫苗接种反应的系统生物学评估
- 批准号:
10584571 - 财政年份:2022
- 资助金额:
$ 131.25万 - 项目类别: