Oxidative stress-induced vascular pathology and dysfunction in Alzheimer’s disease
阿尔茨海默病中氧化应激诱导的血管病理学和功能障碍
基本信息
- 批准号:10523897
- 负责人:
- 金额:$ 42.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-nitrotyrosineAgeAgingAlzheimer like pathologyAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease pathologyAlzheimer&aposs disease therapeuticAmyloid beta-ProteinAnimal ModelAnimalsAstrocytesAutopsyAwardBasement membraneBiological MarkersBlood VesselsBlood capillariesBlood flowBrainCell AdhesionCerebrovascular DisordersCerebrumCognitionComplexConfocal MicroscopyContralateralDementiaDepositionDevelopmentDisease ProgressionDyesElectrophysiology (science)Endothelial CellsExtracellular Matrix ProteinsExtravasationFibronectinsFrequenciesFunctional disorderFutureHemorrhageHippocampus (Brain)HumanHyperemiaImageImage AnalysisImaging TechniquesImpaired cognitionImpairmentIndividualInfarctionKnowledgeLabelLaser Speckle ImagingLeadLinkLong-Term PotentiationMeasuresMediatingMemoryModelingMonitorMusNeuronal DysfunctionNitrogenOxidative StressOxygenPathologicPathologyPeripheralPeroxonitritePhysiologyPre-Clinical ModelProcessProteinsProtocols documentationResearch Project GrantsResolutionResourcesRodentRoleRose BengalRouteSalineSamplingSliceSpecimenStimulusStructureSynapsesSynaptic plasticityTechniquesTestingThree-Dimensional ImageThrombosisTimeTissue HarvestingTissuesTyrosineValidationVascular DiseasesVibrissaeWorkamyloid pathologyarteriolebarrel cortexbrain tissuecerebrovascularcerebrovascular pathologycognitive functioncomorbidityexperimental studyimaging approachinsightintravital imagingmacromoleculemicroscopic imagingmicrovascular pathologymouse modelmultiphoton imagingmultiphoton microscopyneocorticalneurovascularneurovascular couplingnon-dementednoveloxidative damagephotoactivationpre-clinicalsynaptic functionthrombotictime usetreatment strategytwo-photonvascular cognitive impairment and dementiavascular injuryvector
项目摘要
PROJECT SUMMARY/ ABSTRACT
Vascular contributions to cognitive impairment and dementia (VCID) is highly comorbid with Alzheimer's
disease (AD) where it exacerbates and hastens functional deficits. Mechanistic studies of vascular pathology
formation and its effects on brain function, especially in AD, is limited. Developing translational imaging for
application to mixed pathology models is necessary to understand the complex pathophysiological processes
that link VCID and AD. Recently, we modified and optimized the oxidative stress-induced photothrombosis
protocol (I.e. photoactivation of IV-injected Rose Bengal dye) for targeting individual capillaries in rodents. The
major advantage of this novel vascular oxidative stress model is that vessel stalls, occlusion, and
microhemorrhage can be followed in single capillaries in living mice, in real time, using multiphoton imaging. In
this R21, we aim to apply this technique to 5xFAD mice to generate and characterize a novel AD/VCID mouse
model en route to determining fibronectin— a matrix protein that supports vascular structure and integrity—as
an indicator for the oxidative stress that arises from both cerebrovascular disease and AD. Our ongoing work
on postmortem human brain specimens has revealed that astrocyte-derived fibronectin strongly colocalizes
with the oxidative stress marker, nitrotyrosine (NT) especially around cerebrovessels and Aβ deposits.
Photothrombosis of small cerebral arterioles revealed accumulation of fibronectin/NT colocalization at
intravascular and nearby perivascular regions, similar to what we observe in human AD brain tissue. Here, we
propose to use cutting edge physiology approaches combined with human postmortem brain specimens from
our world class brain bank at the Sanders-Brown Center on Aging, to test the hypothesis that oxidative
stress—indicated by NT incorporation into fibronectin— exacerbates cerebrovascular and synaptic
dysfunction in the context of AD. In Aim 1, we will determine the effect of microvascular oxidative stress on
neurovascular function in WT and 5xFAD mice. Multiphoton imaging techniques will be used to apply and to
observe, in real-time, the development of microvascular pathologies including blood vessel stalls, vessel
occlusion (infarct), and microhemorrhage as well as their effects on neurovascular coupling. Mouse brain
tissues and postmortem samples from humans with confirmed vascular pathology and AD pathology will also
be used to assess fibronectin/NT interactions with blood vessels, and to cross-validate our novel
photothrombotic mouse model of mixed AD/VCID pathology. In Aim2, we will test the hypothesis that oxidative
stress-induced microvascular pathology in 5xFAD mice leads to the global exacerbation of cognition and
synaptic function in the context of AD-like pathology. The proposed studies will fill a critical knowledge gap
surrounding the convergence of pathologic sequelae in cerebrovascular disease and AD. Moreover,
establishment of a novel mouse model for mixed AD/VCID pathology will help inform new strategies for treating
individuals with both AD and vascular pathology.
项目概要/摘要
血管对认知障碍和痴呆 (VCID) 的影响与阿尔茨海默病高度共存
疾病(AD),其恶化并加速血管病理学的机制研究。
其形成及其对大脑功能的影响,特别是在 AD 中,开发转化成像是有限的。
应用混合病理学模型对于理解复杂的病理生理过程是必要的
最近,我们修改并优化了氧化应激诱导的光血栓形成。
用于靶向啮齿类动物个体毛细血管的方案(即静脉注射孟加拉玫瑰染料的光激活)。
这种新型血管氧化应激模型的主要优点是血管失速、闭塞和
使用多光子成像可以实时追踪活体小鼠单个毛细血管的微出血。
对于 R21,我们的目标是将该技术应用于 5xFAD 小鼠,以生成并表征新型 AD/VCID 小鼠
确定纤连蛋白(一种支持血管结构和完整性的基质蛋白)的模型
我们正在进行的工作是脑血管疾病和 AD 引起的氧化应激的指标。
对死后人脑标本的研究表明,星形胶质细胞衍生的纤连蛋白强烈共定位
氧化应激标记物硝基酪氨酸 (NT) 尤其是在脑血管和 Aβ 沉积物周围。
大脑小动脉的光血栓形成揭示了纤连蛋白/NT共定位的积累
血管内和附近的血管周围区域,类似于我们在人类 AD 脑组织中观察到的情况。
建议使用尖端生理学方法与人类死后大脑标本相结合
我们位于桑德斯-布朗衰老中心的世界级脑库,旨在检验氧化作用的假设
NT 掺入纤连蛋白表明应激会加剧脑血管和突触
在目标 1 中,我们将确定微血管氧化应激对 AD 的影响。
WT 和 5xFAD 小鼠的神经血管功能将被用于应用和研究。
实时观察微血管病变的发展,包括血管失速、血管
闭塞(梗塞)和微出血及其对小鼠大脑神经血管耦合的影响。
来自已确认血管病理学和 AD 病理学的人类组织和死后样本也将
用于评估纤连蛋白/NT 与血管的相互作用,并交叉验证我们的新颖
AD/VCID 混合病理的光血栓小鼠模型在 Aim2 中,我们将检验氧化的假设。
5xFAD 小鼠中应激诱导的微血管病理导致认知和认知能力的全面恶化
拟议的研究将填补 AD 样病理学中的关键知识空白。
围绕脑血管疾病和 AD 病理后遗症的融合。
建立 AD/VCID 混合病理学的新型小鼠模型将有助于提供新的治疗策略
同时患有 AD 和血管病理学的个体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pradoldej Sompol其他文献
Pradoldej Sompol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
A2E老化ARMS2/HTRA1型iPSC-RPE细胞的研究:个体化AMD发病机制初步探索
- 批准号:81400412
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NightWare Therapeutic Platform for improving Cardiovascular Health inAdults With Nightmares Associated with PTSD
NightWare 治疗平台可改善患有 PTSD 相关噩梦的成年人的心血管健康
- 批准号:
10559634 - 财政年份:2022
- 资助金额:
$ 42.08万 - 项目类别:
Elucidating the mechanism of erythropoietin (EPO) in mitigating Dry-AMD pathophysiology
阐明促红细胞生成素 (EPO) 缓解干性 AMD 病理生理学的机制
- 批准号:
10521937 - 财政年份:2022
- 资助金额:
$ 42.08万 - 项目类别:
Myelination and Resilience Against Limbic Alpha-Synucleinopathy
髓鞘形成和对边缘阿尔法突触核蛋白病的抵抗力
- 批准号:
10578480 - 财政年份:2022
- 资助金额:
$ 42.08万 - 项目类别:
Elucidating the mechanism of erythropoietin (EPO) in mitigating Dry-AMD pathophysiology
阐明促红细胞生成素 (EPO) 缓解干性 AMD 病理生理学的机制
- 批准号:
10521937 - 财政年份:2022
- 资助金额:
$ 42.08万 - 项目类别: