High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
基本信息
- 批准号:10522013
- 负责人:
- 金额:$ 43.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalArchitectureBCL2 geneBiologyCRISPR interferenceCRISPR screenCRISPR-mediated transcriptional activationCRISPR/Cas technologyCancer cell lineCellsChromatinChromatin StructureClustered Regularly Interspaced Short Palindromic RepeatsColorComplexDNADataDiseaseDissectionDistantElementsEngineeringEnhancersExhibitsGATA4 geneGene ExpressionGene Expression RegulationGenesGenetic EpistasisGenetic Predisposition to DiseaseGenetic TranscriptionGenomeGenome engineeringGenomic approachGrowthGuide RNAHela CellsHuman GenomeIRF1 geneImageImaging technologyIndividualK-562K562 CellsLeukemic CellLibrariesLightMYC geneMachine LearningMalignant NeoplasmsMapsMediatingMediator of activation proteinMessenger RNAMethodsModelingMyeloid LeukemiaOncogenesPathogenicityPatternPenetrancePhasePlayPromoter RegionsProteinsRNARegulationRegulatory ElementResolutionRoleSingle Nucleotide PolymorphismStretchingTechniquesTestingTimeTranscription CoactivatorTranslatingUntranslated RNAVariantWorkbasebiological systemscancer cellcancer riskcancer typecell typeclinical riskcomputer studiesdesigndisorder riskexperimental studygene networkgenetic associationgenetic variantgenome wide association studygenomic locuslive cell imagingmachine learning modelmammalian genomepromoterreal time monitoringscreening
项目摘要
ABSTRACT
Non-coding elements comprise 98% of the human genome. The coordination of non-coding regulatory elements
in the mammalian genome plays a pivotal role in controlling gene expression. Both experimental and
computational studies reveal that pathogenic genes involved in complex diseases, including oncogenes, are
regulated by a large number of enhancers, implying the existence of a complex interdependent regulatory
network of enhancers in modulating and maintaining expression of these genes. Genome-Wide Association
Studies (GWAS) reveal that non-coding regulatory elements, including enhancers, are hotspots for the genetic
predisposition to disease. To determine causal relationships between chromatin architecture and gene
transcription, perturbation in a biological system is necessary. Recent advances in CRISPR-based genome
engineering and live cell imaging technologies have enabled new techniques for ultrahigh resolution interrogation
of the function of various genome regulatory elements and how they relate to gene expression. In preliminary
studies in our lab, we performed a targeted CRISPR interference (CRISPRi) based screen to study how the 7
MYC enhancers present in K562 cells work together to co-regulate this oncogene. We created a library with
>87,000 pairs of gRNAs targeting the MYC enhancers to understand the epistatic network of gene regulation
underlying MYC expression. We found that when a subset of enhancer pairs were targeted together, they
exhibited a more dramatic than expected reduction in growth rate. We developed a model that divides MYC
enhancers into 2 layers that work together with varying degrees of efficiency to co-regulate MYC expression in
K562 cells. Here, we seek to expand these preliminary results to examine additional oncogenes and perform
these experiments in additional cell types. In addition, we will combine perturbation of oncogene enhancers with
CRISPR-based live cell imaging (termed CRISPR LiveFISH), that allows for the dynamic imaging of multiple
genomic loci, mRNA, and protein components in living cells. In Aim 1, we will develop an ultrahigh-resolution
multiplexed CRISPRi/a tiling screens platform to dissect enhancer interactions of different oncogenes in different
cancer cell lines. We will perform multiplexed CRISPRi/CRISPRa screens to inhibit or activate pairs of enhancers
with an ultrahigh spatial resolution (~20bp) controlling four oncogenes (MYC, CCND, BCL2, PDE4DIP) in K562
and HeLa cells. In Aim 2, we will characterize the dynamic real-time interactions between transcriptional
coactivators, mediators, multiple enhancers, promoters, and RNA transcription during CRISPRi/a-mediated
perturbation. We will monitor real-time dynamics of different enhancers, promotors, RNA transcription, and the
transcriptional coactivator proteins BRD4, IRF1, and Gata4 using LiveFISH with and without enhancer
perturbation. Altogether, we seek to apply new CRISPR technologies developed in our lab to create a model of
how oncogene enhancers are dynamically regulated across multiple oncogenes and in multiple types of cancer
cells.
抽象的
非编码元件占人类基因组的 98%。非编码监管要素的协调
在哺乳动物基因组中,在控制基因表达方面发挥着关键作用。既是实验性的又是
计算研究表明,涉及复杂疾病的致病基因,包括癌基因,
受到大量增强子的调节,这意味着存在复杂的相互依赖的调节
调节和维持这些基因表达的增强子网络。全基因组协会
研究(GWAS)表明,非编码调控元件,包括增强子,是遗传的热点。
患病倾向。确定染色质结构与基因之间的因果关系
转录,生物系统中的扰动是必要的。基于 CRISPR 的基因组的最新进展
工程和活细胞成像技术使超高分辨率询问新技术成为可能
各种基因组调控元件的功能以及它们与基因表达的关系。在初步
在我们实验室的研究中,我们进行了基于靶向 CRISPR 干扰 (CRISPRi) 的筛选,以研究 7
K562 细胞中存在的 MYC 增强子共同作用,共同调节该癌基因。我们创建了一个库
>87,000 对靶向 MYC 增强子的 gRNA,用于了解基因调控的上位网络
基础 MYC 表达。我们发现,当增强子对的子集一起靶向时,它们
增长率下降幅度超出预期。我们开发了一个划分MYC的模型
增强子分为两层,以不同程度的效率协同作用,共同调节 MYC 的表达
K562细胞。在这里,我们寻求扩展这些初步结果以检查其他癌基因并进行
这些实验是在其他细胞类型中进行的。此外,我们将把癌基因增强子的扰动与
基于 CRISPR 的活细胞成像(称为 CRISPR LiveFISH),可对多个细胞进行动态成像
活细胞中的基因组位点、mRNA 和蛋白质成分。在目标 1 中,我们将开发一种超高分辨率
多重 CRISPRi/a 平铺筛选平台可剖析不同癌基因的增强子相互作用
癌细胞系。我们将进行多重 CRISPRi/CRISPRa 筛选以抑制或激活增强子对
具有超高空间分辨率 (~20bp) 控制 K562 中的四种癌基因(MYC、CCND、BCL2、PDE4DIP)
和海拉细胞。在目标 2 中,我们将描述转录因子之间的动态实时交互。
CRISPRi/a 介导过程中的共激活子、介体、多个增强子、启动子和 RNA 转录
扰动。我们将监测不同增强子、启动子、RNA 转录和
使用带或不带增强子的 LiveFISH 检测转录共激活蛋白 BRD4、IRF1 和 Gata4
扰动。总之,我们寻求应用我们实验室开发的新 CRISPR 技术来创建一个模型
癌基因增强子如何在多种癌基因和多种类型的癌症中动态调节
细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Stanley Qi其他文献
Lei Stanley Qi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Stanley Qi', 18)}}的其他基金
Manipulating and Interrogating Spatial Transcriptomics
操纵和询问空间转录组学
- 批准号:
10702050 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
- 批准号:
10431227 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
- 批准号:
10571868 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10671756 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
Probing relationships between DNA methylation and cellular senescence with high-throughput CRISPR-based epigenetic editing
利用基于 CRISPR 的高通量表观遗传编辑探索 DNA 甲基化与细胞衰老之间的关系
- 批准号:
10593233 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
Probing relationships between DNA methylation and cellular senescence with high-throughput CRISPR-based epigenetic editing
利用基于 CRISPR 的高通量表观遗传编辑探索 DNA 甲基化与细胞衰老之间的关系
- 批准号:
10593233 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
Examining COVID-19 in Down Syndrome Patients Using Human iPSC-Derived Organoids
使用人类 iPSC 衍生的类器官检查唐氏综合症患者的 COVID-19
- 批准号:
10241207 - 财政年份:2021
- 资助金额:
$ 43.98万 - 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in Dilated Cardiomyopathy
人类 iPSC 用于阐明扩张型心肌病中的细胞间串扰信号传导
- 批准号:
10627921 - 财政年份:2018
- 资助金额:
$ 43.98万 - 项目类别:
Modeling Tyrosine Kinase Inhibitor-Induced Vascular Dysfunction Using Human iPSCs
使用人 iPSC 模拟酪氨酸激酶抑制剂诱导的血管功能障碍
- 批准号:
10518663 - 财政年份:2018
- 资助金额:
$ 43.98万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the epigenetic landscape and therapeutic vulnerabilities of Richter's syndrome in CRISPR-based mouse models
在基于 CRISPR 的小鼠模型中定义里氏综合症的表观遗传景观和治疗脆弱性
- 批准号:
10425662 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Developing A Novel Combinatorial Therapy for Lethal Neuroendocrine Prostate Cancer
开发一种治疗致命性神经内分泌前列腺癌的新型组合疗法
- 批准号:
10518805 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
Novel neuroprotective activities of flavonoids against retinal degenerative diseases
黄酮类化合物对视网膜退行性疾病的新型神经保护活性
- 批准号:
10704506 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
Developing A Novel Combinatorial Therapy for Lethal Neuroendocrine Prostate Cancer
开发一种针对致命性神经内分泌前列腺癌的新型组合疗法
- 批准号:
10664011 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别:
Novel neuroprotective activities of flavonoids against retinal degenerative diseases
黄酮类化合物对视网膜退行性疾病的新型神经保护活性
- 批准号:
10704506 - 财政年份:2022
- 资助金额:
$ 43.98万 - 项目类别: