A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
基本信息
- 批准号:10571868
- 负责人:
- 金额:$ 21.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalBiological AssayCAR T cell therapyCRISPR/Cas technologyCancer PatientCell physiologyChromosomal translocationChromosome MappingClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexComputer AnalysisCustomDataDevelopmentDisparateEffectivenessEndoribonucleasesEngineeringEpigenetic ProcessFailureFutureGene LibraryGene TargetingGenesGeneticGenetic TranscriptionGuide RNAHematologic NeoplasmsHumanImmunotherapyImpairmentIn VitroIndividualKnock-outMapsMethodologyMethodsModelingOutcomePatientsPhenotypePost-Transcriptional RegulationPre-Clinical ModelProcessProliferatingRNARNA InterferenceRelapseRepressionResistanceRiskSignal TransductionSolid NeoplasmSpecificitySystemT cell therapyT-LymphocyteTechnologyTranscriptUp-RegulationValidationVariantWorkcancer typechimeric antigen receptorchimeric antigen receptor T cellsclinical efficacycomputer frameworkcytokinecytotoxicitydesigneffector T cellengineered T cellsexhaustexhaustiongene repressiongenetic analysisgenome-widegenotoxicityimprovedknock-downmultimodalitynext generationnovelnovel strategiesprogrammed cell death protein 1programsrestraintscreeningsmall moleculesynthetic biologytranscriptometumor
项目摘要
ABSTRACT
Chimeric Antigen Receptor (CAR) T cell therapy has proven to be a breakthrough treatment with curative
potential in hematologic cancer patients as well as in aggressive preclinical models. However, recent studies
have shed light on major barriers to progress – many patients that initially respond completely to CAR T cell
therapy eventually relapse, and CAR T cells have demonstrated limited clinical efficacy in the treatment of solid
tumors. A key phenomenon that has been causally implicated in these failure modes is CAR T cell exhaustion,
where tonically-signaling CAR T cells are driven to a distinct and dysfunctional phenotype with restrained
antitumor activity. Previous genome-wide perturbation studies using CRISPR-Cas9 have identified a growing list
of single gene targets that, when knocked out, help mitigate exhaustion and modestly improve T cell function.
However, the resulting individual gene hits from these screens are often context-dependent and disparate across
different tumor and CAR models. Altogether, these studies indicate that the exhausted T cell phenotype is largely
driven by the upregulation of key gene programs rather than single genes, though the complex network of these
genetic interactions remains poorly defined.
To address these unmet needs, we propose a synthetic biology-driven approach using CRISPR-Cas13d
transcriptome engineering to develop potent, exhaustion-resistant CAR T cells. Cas13d is a small CRISPR RNA-
guided RNA endonuclease that can process a single guide RNA array to degrade multiple distinct target RNA
transcripts in a highly sequence-specific and robust manner. In AIM 1, we will develop a novel platform using
Cas13d to simultaneously downregulate multiple endogenous genes in primary human T cells, with a specific
focus on improving exhausted CAR T cell effector function. In AIM 2, we will use this technology to conduct a
double knockdown proliferation screen in exhausted CAR T cells targeting pairs of putative negative regulators
of T cell antitumor activity. We will utilize an established computational framework to identify highly enriched
gene pairings, to map genetic interactions (GI) between genes, and to define a network of exhaustion. We
hypothesize that our multimodal screening methodology can be used to identify new synergistic gene pairings
that outperform single knockdown phenotypes seen in prior studies.
Our proposed project will establish a new platform for multiplexed gene repression and screening in primary
human T cells that overcomes limitations faced by state-of-the-art CRISPR-Cas9 and RNAi technologies.
Furthermore, our studies will demonstrate a novel strategy to mitigate CAR T cell exhaustion, which will improve
upon current immune therapies and enhance their effectiveness. Ultimately, our work will address clinical unmet
needs as well as help the broader scientific community 1) better understand the complex network of T cell
exhaustion and 2) use this data to inform the development of next-generation CAR T cell therapies.
抽象的
嵌合抗原受体(CAR)T细胞疗法已被证明是一种突破性的治疗方法,具有治愈性
然而,最近的研究表明,它在血液癌症患者以及侵袭性临床前模型中具有潜力。
揭示了进展的主要障碍——许多患者最初对 CAR T 细胞完全反应
治疗最终会复发,CAR T细胞在治疗实体瘤方面已证明临床疗效有限
导致这些失败模式的一个关键现象是 CAR T 细胞耗竭,
强效信号 CAR T 细胞被驱动为一种独特且功能失调的表型,且受到限制
之前使用 CRISPR-Cas9 进行的全基因组扰动研究已经确定了越来越多的抗肿瘤活性。
单基因靶点被敲除后,有助于减轻疲劳并适度改善 T 细胞功能。
然而,这些筛选产生的个体基因命中通常是依赖于环境的,并且在不同的环境中是不同的。
总而言之,这些研究表明,耗尽的 T 细胞表型很大程度上是由不同的肿瘤和 CAR 模型决定的。
由关键基因程序而不是单个基因的上调驱动,尽管这些程序的复杂网络
遗传相互作用仍然不明确。
为了解决这些未满足的需求,我们提出了一种使用 CRISPR-Cas13d 的合成生物学驱动方法
Cas13d 是一种小型 CRISPR RNA- 转录组工程,用于开发有效的、抗耗竭的 CAR T 细胞。
引导RNA核酸内切酶,可以处理单个引导RNA阵列以降解多个不同的靶RNA
在 AIM 1 中,我们将使用高度序列特异性和稳健的方式开发一个新颖的平台。
Cas13d 可同时下调人类原代 T 细胞中的多个内源基因,具有特定的
专注于改善耗尽的CAR T细胞效应功能。在AIM 2中,我们将利用该技术进行一项研究。
针对假定负调节因子对的耗竭 CAR T 细胞的双重敲低增殖筛选
我们将利用已建立的计算框架来识别高度富集的 T 细胞抗肿瘤活性。
基因配对,绘制基因之间的遗传相互作用(GI),并定义耗尽网络。
我们的多模式筛选方法可用于识别新的协同基因配对
优于先前研究中发现的单一敲低表型。
我们提出的项目将建立一个新的平台,用于初级阶段的多重基因抑制和筛查
人类 T 细胞克服了最先进的 CRISPR-Cas9 和 RNAi 技术所面临的限制。
此外,我们的研究将展示一种减轻 CAR T 细胞耗竭的新策略,这将改善
最终,我们的工作将解决临床未满足的问题。
需求并帮助更广泛的科学界 1) 更好地了解 T 细胞的复杂网络
2) 使用这些数据为下一代 CAR T 细胞疗法的开发提供信息。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advances in CRISPR therapeutics.
CRISPR 疗法的进展。
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Chavez, Michael;Chen, Xinyi;Finn, Paul B;Qi, Lei S
- 通讯作者:Qi, Lei S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Stanley Qi其他文献
Lei Stanley Qi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Stanley Qi', 18)}}的其他基金
Manipulating and Interrogating Spatial Transcriptomics
操纵和询问空间转录组学
- 批准号:
10702050 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
A Cas13d-based screening approach to engineer exhaustion-resistant CAR T cells
基于 Cas13d 的筛选方法来设计抗耗竭 CAR T 细胞
- 批准号:
10431227 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10522013 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10522013 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
High resolution dissection of oncogene enhancer networks via CRISPR screening and live-cell imaging.
通过 CRISPR 筛选和活细胞成像对癌基因增强子网络进行高分辨率解剖。
- 批准号:
10671756 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
Probing relationships between DNA methylation and cellular senescence with high-throughput CRISPR-based epigenetic editing
利用基于 CRISPR 的高通量表观遗传编辑探索 DNA 甲基化与细胞衰老之间的关系
- 批准号:
10593233 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
Probing relationships between DNA methylation and cellular senescence with high-throughput CRISPR-based epigenetic editing
利用基于 CRISPR 的高通量表观遗传编辑探索 DNA 甲基化与细胞衰老之间的关系
- 批准号:
10593233 - 财政年份:2022
- 资助金额:
$ 21.61万 - 项目类别:
Examining COVID-19 in Down Syndrome Patients Using Human iPSC-Derived Organoids
使用人类 iPSC 衍生的类器官检查唐氏综合症患者的 COVID-19
- 批准号:
10241207 - 财政年份:2021
- 资助金额:
$ 21.61万 - 项目类别:
Human iPSCs for Elucidating Intercellular Crosstalk Signaling in Dilated Cardiomyopathy
人类 iPSC 用于阐明扩张型心肌病中的细胞间串扰信号传导
- 批准号:
10627921 - 财政年份:2018
- 资助金额:
$ 21.61万 - 项目类别:
相似国自然基金
新型Argonaute‒Csm6‒DNAzyme生物传感机制用于食源性致病菌超灵敏与现场化检测的研究
- 批准号:32372415
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于上转换发光和SERS协同增强机制的双模式生物成像检测技术基础研究
- 批准号:62375146
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于氰基“静默区”标签的食品中生物胺多组分SERS同步传感检测方法及机理研究
- 批准号:32372431
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
改性卤氧化铋基纳米阵列微流控-光电化学生物传感器构建与肝癌标志物检测应用研究
- 批准号:22304068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
- 批准号:42377456
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 21.61万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 21.61万 - 项目类别:
Developing Autophagy-Targeting Chimeras and Optimizing Cell Penetration of Large-Molecule Therapeutics
开发自噬靶向嵌合体并优化大分子治疗的细胞渗透
- 批准号:
10558145 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 21.61万 - 项目类别: