Large-scale harmonization and integration of multi-modal ADNI data for the early detection of Alzheimer's disease and related dementias
大规模协调和整合多模式 ADNI 数据,以早期发现阿尔茨海默病和相关痴呆症
基本信息
- 批准号:10515212
- 负责人:
- 金额:$ 77.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease diagnosticAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer&aposs disease related dementiaAmericanAmyloidAmyloid beta-ProteinAutomobile DrivingBiologicalBiological MarkersBloodBlood VesselsBrain PathologyClassificationClinicalClinical DataComputer softwareDataData AggregationData SetDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEthnic groupFundingFutureGenotypeGoalsHealth StatusHeterogeneityImageIndividualInternationalJapaneseLabelLearningLettersLong-Term EffectsMachine LearningMagnetic Resonance ImagingMethodsModalityModelingNerve DegenerationNoiseParticipantPathogenesisPathologyPatientsPerformancePositron-Emission TomographyProcessResourcesScanningShapesSiteSoftware ToolsSourceStructureSyndromeSystematic BiasTechniquesTestingTextureTimeUnited States National Institutes of HealthValidationWhite Matter HyperintensityWorkbasebiomarker developmentclinical biomarkersclinical phenotypecohortcombatdata harmonizationdata portaldata sharingdeep learningdiverse dataimprovedinnovationinsightinterestlearning strategymultimodal datamultimodalitynervous system disorderneuroimagingnovelpathology imagingpre-clinicalpredictive modelingstructured datatau Proteinstool
项目摘要
Alzheimer’s disease (AD) and Alzheimer’s Disease Related Dementia (ADRD) are highly heterogeneous in
pathology with mixed signatures on clinical biomarkers, making the early diagnosis challenging. Over the past
few decades, large cohorts of multi-modal data have been collected to identify the interactions between these
key pathologies. However, the utility of such cohorts has been compromised by the heterogeneity of the
data collected from multiple sites and scanners, creating technical variability that can introduce noise and
bias. Without comprehensive data harmonization and aggregation, these non-biological sources of variability
can systematically bias the results of data-driven efforts in biomarker development. Our long-term goal is to
identify specific AD and ADRD disease pathology markers and how they evolve. This project aims to improve the
early detection of AD and ADRD so that future disease-modifying therapy can be allocated more efficiently to
patients. To achieve this objective, we aim to harmonize trans-national cohorts of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) to improve the diagnostic classification of AD and ADRD. The central
hypothesis of our study is that by harmonizing the multi-modal American ADNI (versions 1, 2, 3, and GO) and
Japanese ADNI datasets and building state of the art predictive models from each modality integrated into
comprehensive ensembles, we can identify novel classifiers and features for early AD diagnosis and
differentiation from ADRD. The central hypothesis will be tested by pursuing three specific aims: 1)
Harmonization of multi-modal ADNI data, 2) Development of a suite of effective classifiers from diverse,
harmonized ADNI data modalities, 3) Integration of multi-modal predictors into an ensemble model for
AD/ADRD/healthy control classification, validation of the model in international ADNI cohorts, and sharing of
the data and software products. We will pursue these aims by applying innovative computational approaches
that combine traditional machine learning and more recent deep learning methods for unstructured
neuroimaging and structured clinical data in ADNI. Moreover, we will leverage ensemble learning
techniques to effectively combine models built from these diverse data modalities to optimize for robust
classifiers of AD, ADRD, and the health status of patients. The results from this proposal will have a significant
impact on better understanding the spatial dynamics and other mechanisms of AD and ADRD pathogenesis.
Importantly, this project will create publicly available resources for multi-modal data harmonization and predictive
modeling that can be used to explore further AD, ADRD, and other neurological disorders in future studies.
阿尔茨海默病(AD)和阿尔茨海默病相关痴呆(ADRD)在疾病方面具有高度异质性。
临床生物标志物的病理学特征多样,使得早期诊断具有挑战性。
几十年来,人们收集了大量的多模式数据来识别这些数据之间的相互作用
然而,此类队列的效用已因异质性而受到损害。
从多个站点和扫描仪收集的数据,造成技术可变性,可能引入噪音和
如果没有全面的数据协调和汇总,这些非生物来源的变异性就会产生偏差。
可以系统地偏向生物标志物开发中数据驱动的努力的结果。
确定特定的 AD 和 ADRD 疾病病理标志物及其演变过程。
及早发现 AD 和 ADRD,以便未来的疾病缓解治疗能够更有效地分配给
为了实现这一目标,我们的目标是协调跨国阿尔茨海默病患者群体。
神经影像倡议 (ADNI) 旨在改进 AD 和 ADRD 的诊断分类。
我们研究的假设是,通过协调多模式美国 ADNI(版本 1、2、3 和 GO)和
日本 ADNI 数据集并从每种模态构建最先进的预测模型,并将其集成到
综合集成,我们可以识别新的分类器和特征用于早期 AD 诊断和
与 ADRD 的区别将通过追求三个具体目标来检验:1)
协调多模态 ADNI 数据,2) 开发一套来自不同、
统一的 ADNI 数据模态,3) 将多模态预测因子集成到集成模型中
AD/ADRD/健康对照分类、国际 ADNI 队列中模型的验证以及共享
我们将通过应用创新的计算方法来实现这些目标。
结合了传统机器学习和最新的非结构化深度学习方法
此外,我们将利用 ADNI 中的神经影像和结构化临床数据。
有效组合从这些不同数据模态构建的模型的技术,以优化鲁棒性
AD、ADRD 和患者健康状况的分类器 该提案的结果将具有重大意义。
对更好地理解 AD 和 ADRD 发病机制的空间动力学和其他机制的影响。
重要的是,该项目将为多模式数据协调和预测创建公开可用的资源
模型可用于在未来的研究中进一步探索 AD、ADRD 和其他神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeiran Choupan其他文献
Jeiran Choupan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeiran Choupan', 18)}}的其他基金
Large-scale harmonization and integration of multi-modal ADNI data for the early detection of Alzheimer's disease and related dementias
大规模协调和整合多模式 ADNI 数据,以早期发现阿尔茨海默病和相关痴呆症
- 批准号:
10659223 - 财政年份:2022
- 资助金额:
$ 77.85万 - 项目类别:
Development of perivascular space mapping toolset as a diagnostic aid for Alzheimer's disease
开发血管周围空间测绘工具集作为阿尔茨海默病的诊断辅助工具
- 批准号:
10255954 - 财政年份:2021
- 资助金额:
$ 77.85万 - 项目类别:
Structural and diffusion changes of perivascular space in aging, cognitive decline and Alzheimer's disease
衰老、认知能力下降和阿尔茨海默病中血管周围空间的结构和扩散变化
- 批准号:
10480056 - 财政年份:2021
- 资助金额:
$ 77.85万 - 项目类别:
Structural and diffusion changes of perivascular space in aging, cognitive decline and Alzheimer's disease
衰老、认知能力下降和阿尔茨海默病中血管周围空间的结构和扩散变化
- 批准号:
10302009 - 财政年份:2021
- 资助金额:
$ 77.85万 - 项目类别:
Structural and diffusion changes of perivascular space in aging, cognitive decline and Alzheimer's disease
衰老、认知能力下降和阿尔茨海默病中血管周围空间的结构和扩散变化
- 批准号:
10650827 - 财政年份:2021
- 资助金额:
$ 77.85万 - 项目类别:
Mapping human brain perivascular space in lifespan using human connectome project data
使用人类连接组项目数据绘制生命周期中的人脑血管周围空间
- 批准号:
10012731 - 财政年份:2020
- 资助金额:
$ 77.85万 - 项目类别:
相似国自然基金
基于微球透镜阵列的数字化检测技术用于阿尔茨海默病蛋白标志物检测的研究
- 批准号:62205366
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型近红外AIE核酸胶束荧光纳米探针的构建及阿尔茨海默病相关miRNA的检测与成像应用研究
- 批准号:22264011
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于诱导性多能干细胞与多参数微纳传感芯片的阿尔茨海默病个性化检测平台
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阿尔茨海默病发病机制研究的微流控芯片荧光-磁导双检测系统的构建及应用
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
基于多肽自组装构建电化学传感平台并用于阿尔茨海默病血液标志物检测的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigate the utility of APLP1 as an endosomal biomarker for Alzheimer's Disease in Down Syndrome
研究 APLP1 作为唐氏综合症阿尔茨海默氏病内体生物标志物的效用
- 批准号:
10727134 - 财政年份:2023
- 资助金额:
$ 77.85万 - 项目类别:
Preparing for Blood-Based Alzheimer’s Disease Biomarker Testing in Diverse Populations: Development of a Decision-Support Tool for Primary Care
为不同人群进行基于血液的阿尔茨海默病生物标志物测试做好准备:开发初级保健决策支持工具
- 批准号:
10722716 - 财政年份:2023
- 资助金额:
$ 77.85万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 77.85万 - 项目类别:
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 77.85万 - 项目类别: