Novel imaging genetic biomarkers for sporadic frontotemporal dementia through machine learning
通过机器学习发现散发性额颞叶痴呆的新型成像遗传生物标志物
基本信息
- 批准号:10643803
- 负责人:
- 金额:$ 12.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgeAge of OnsetAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAtrophicBehavioralBiologicalBiological MarkersBiometryBrain MappingCaliforniaCardiovascular DiseasesCardiovascular systemClassificationClinicalClinical ResearchClinical TrialsClinical Trials DesignCognitive agingComplexComputer ModelsDataData SetDementiaDevelopmentDiagnosisDiagnosticDifferential DiagnosisDiscriminant AnalysisDiseaseEarly DiagnosisEnvironmentEpidemiologistEpidemiologyFosteringFrontotemporal DementiaFrontotemporal Lobar DegenerationsGenesGeneticGenetic MarkersGenetic ModelsGenetic ResearchGenetic RiskGenotypeGoalsImageImmuneImmunologicsIncidenceIndividualInheritedInternationalIrisKnowledgeLanguageMachine LearningMagnetic Resonance ImagingMediatingMemoryMentored Research Scientist Development AwardMentorsMentorshipMethodologyMethodsMissionModelingMultimodal ImagingNerve DegenerationNeurodegenerative DisordersNeurologistOutcomePathway interactionsPatientsPatternPerformancePhenotypePostdoctoral FellowPrognosisResearchResearch MethodologyResearch Project GrantsRiskRoleSan FranciscoScientistSocial BehaviorStratificationSubgroupTauopathiesTechniquesTemporal LobeTherapeuticTherapeutic Clinical TrialTimeTrainingTranslatingUnited States National Institutes of HealthUniversitiesValidationWorkaccurate diagnosisbiomarker developmentcareerclinical developmentclinical heterogeneityclinical subtypescohortdementia riskdiagnostic toolexperiencefrontal lobegenetic varianthazardhigh riskimaging biomarkerimaging geneticsimprovedinnovationmultimodal datamultimodalityneuroimagingneuropathologynovelpatient orientedpatient subsetspersonalized medicinepersonalized strategiespleiotropismpolygenic risk scorepopulation basedpredictive markerpredictive modelingprofessorprognostic toolprogramsrecruitrisk predictionskillsstatisticssymptomatologytargeted treatmenttau Proteinstool
项目摘要
Project Summary
This is an application for a K01 award for Dr. Iris Broce-Diaz, a neuroimaging genetics postdoctoral fellow at the
University of California, San Diego and University of California, San Francisco. Dr. Broce-Diaz is establishing
herself as a young imaging geneticist conducting clinical research on neurodegenerative disease. This K01 will
provide Dr. Broce-Diaz with the support necessary to accomplish the following goals: (1) gain proficiency in
machine learning and computational modeling techniques, (2) gain proficiency in clinical and genetic research
methodology for cognitive aging and complex spectrum of neurodegenerative diseases, including clinical
characterization of frontotemporal dementia (FTD) and other Alzheimer’s Disease-Related Dementias,
differential diagnosis, risk prediction, and biomarker development, and (3) develop an independent research
career. To achieve these goals, Dr. Broce-Diaz has assembled an expert mentoring team, including her primary
mentors: Dr Anders Dale (renowned computational neuroimaging genetics scientist) and co-primary mentor
Bruce Miller (internationally recognized behavioral neurologist and leader in FTD), co-mentors: Drs. Jennifer
Yokoyama (expert in FTD genetics) and Chun Chieh Fan (expert in epidemiology/biostatistics), and two
collaborators: Drs. Adam Boxer (leader in clinical trials for FTD-spectrum disorders) and Wesley Thompson
(expert in advanced statistics).
The goal of the proposed project is to develop novel imaging genetics biomarkers for predicting individuals at
risk of developing sporadic (non-familial) FTD and improving classification accuracy of sporadic FTD. Dr. Broce-
Diaz will achieve this goal through the following specific aims: (1a) utilize a polygenic hazard approach to develop
and validate a novel genetic biomarker for predicting age-specific risk of sporadic FTD; (1b) leverage pleiotropic
information to increase accuracy of the genetic risk scores and derive biologically-based genetic risk scores; (2)
use machine learning approaches to reliably and accurately classify FTD clinical subtypes and obtain
personalized atrophy scores from these brain maps; and (3) improve FTD classification by integrating atrophy
scores with genetic risk scores. This proposed study uses highly innovative methodological approaches for
informing FTD prognosis, diagnosis, and, ultimately, clinical trial design. If validated, these biomarkers will make
significant contributions by assisting clinicians in identifying patients at elevated risk for sporadic FTD and
assisting in diagnosing sporadic FTD in its earliest stages—reducing diagnostic delays, accelerating the
discovery of novel treatments, and improving recruitment accuracy in clinical trials. This K01 research project
will provide Dr. Broce-Diaz with the protected research time and opportunity to train with leaders in the field she
needs to master the skills required to establish an independent, patient-oriented, imaging genetics and biomarker
development clinical research program that will inform diagnosis, prognosis, and guide treatments of FTD and
other neurodegenerative diseases.
项目概要
这是 Iris Broce-Diaz 博士的 K01 奖申请,她是该大学的神经影像遗传学博士后研究员。
加州大学圣地亚哥分校和加州大学旧金山分校正在建立。
她自己作为一名年轻的影像遗传学家,正在进行神经退行性疾病的临床研究。
为 Broce-Diaz 博士提供实现以下目标所需的支持:(1) 熟练掌握
机器学习和计算建模技术,(2) 熟练掌握临床和遗传研究
认知衰老和复杂的神经退行性疾病谱的方法论,包括临床
额颞叶痴呆(FTD)和其他阿尔茨海默病相关痴呆的特征,
鉴别诊断、风险预测和生物标志物开发,以及 (3) 开展独立研究
为了实现这些目标,布罗斯-迪亚兹博士组建了一个专家指导团队,其中包括她的主要导师。
导师:Anders Dale 博士(著名计算神经影像遗传学科学家)兼联合导师
Bruce Miller(国际公认的行为神经学家和 FTD 领域的领导者),共同导师:Jennifer 博士。
Yokoyama(FTD 遗传学专家)和 Chun Chieh Fan(流行病学/生物统计学专家),以及两位
合作者:Adam Boxer 博士(FTD 谱系疾病临床试验的领导者)和 Wesley Thompson
(高级统计专家)。
该项目的目标是开发新的成像遗传学生物标志物来预测个体
发生散发性(非家族性)FTD 的风险并提高散发性 FTD 的分类准确性。
Diaz 将通过以下具体目标实现这一目标:(1a) 利用多基因危害方法来开发
并验证一种新的遗传生物标志物,用于预测散发性 FTD 的年龄特异性风险 (1b) 发挥多效性;
(2) 用于提高遗传风险评分的准确性并得出基于生物学的遗传风险评分的信息;
使用机器学习方法可靠、准确地对 FTD 临床亚型进行分类并获得
来自这些脑图的个性化萎缩评分;(3) 通过整合萎缩来改进 FTD 分类;
这项拟议的研究使用了高度创新的方法学方法。
这些生物标记物将有助于 FTD 预后、诊断以及最终的临床试验设计。
协助忠诚者识别散发性 FTD 风险较高的患者,做出了重大贡献
在最早阶段协助诊断散发性 FTD——减少诊断延迟,加速治疗
发现新疗法,并提高临床试验中的招募准确性。
将为 Broce-Diaz 博士提供受保护的研究时间和与她所在领域的领导者一起培训的机会
需要掌握建立独立的、以患者为导向的影像遗传学和生物标志物所需的技能
制定临床研究计划,为 FTD 的诊断、预后提供信息并指导治疗
其他神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iris J Broce-Diaz其他文献
Iris J Broce-Diaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iris J Broce-Diaz', 18)}}的其他基金
Novel imaging genetic biomarkers for sporadic frontotemporal dementia through machine learning
通过机器学习发现散发性额颞叶痴呆的新型成像遗传生物标志物
- 批准号:
10364707 - 财政年份:2021
- 资助金额:
$ 12.04万 - 项目类别:
相似国自然基金
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
晶状体mtDNA氧化损伤修复与线粒体自噬的空间差异及其调控干预在年龄相关性白内障发病中的作用
- 批准号:82171038
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
FoxO3a通路抑制在年龄相关性白内障发病机制中的调控作用
- 批准号:82070942
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
ODRP泛素化经LECs外泌体释放和自噬降解调控年龄相关性白内障的发病
- 批准号:81974129
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
肠道微生态参与年龄相关性黄斑变性的发病机制及固本清目方的干预作用
- 批准号:81973912
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 12.04万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 12.04万 - 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
- 批准号:
10833734 - 财政年份:2023
- 资助金额:
$ 12.04万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 12.04万 - 项目类别:
Voltage Imaging of Astrocyte-Neuron Interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
10711423 - 财政年份:2023
- 资助金额:
$ 12.04万 - 项目类别: