A phenomics-first resource for interpretation of variants
用于解释变异的表型组学优先资源
基本信息
- 批准号:10642958
- 负责人:
- 金额:$ 188.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-09 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsBasic ScienceBiologyCase StudyCharacteristicsClinicalClinical DataCommunitiesComplexDataData SourcesDatabasesDevelopmentDiagnosisDiagnosticDiseaseDisease modelEvaluationFaceFast Healthcare Interoperability ResourcesFrequenciesFunctional disorderGenesGenetic DiseasesGenomeGenomicsGenotypeHumanHuman GenomeInformation ResourcesJournalsKnowledgeLinkMainstreamingManualsMedical GeneticsMethodsModalityModelingModernizationOntologyOutcomePatient CarePatientsPhenotypeProcessRare DiseasesResearchResearch PersonnelResourcesSoftware EngineeringSourceStructureSystemTechniquesTechnologyTerminologyVariantWorkclinical careclinically actionablecommunity partnershipcomputational platformdata integrationdata modelingdata standardsdatabase schemadisease diagnosisdisease phenotypeempowermentgene functiongenetic variantgenomic variationheterogenous datahuman diseaseimprovedinteroperabilitymodel organismnovelpatient registryphenomicsphenotypic dataprecision medicineprototypetoolvariant of unknown significance
项目摘要
A Phenomics-First Resource (PFR) for interpretation of variants
Genomics is key to precision medicine; however, despite the ease of sequencing, clinical interpretation is still
thwarted because relevant data (disease, phenotype, and variant) is complex, heterogeneous, and
disaggregated across sources. Moreover, this evidence is sometimes incomplete, conflicting, and erroneous.
Consequently, clinicians face long lists of candidate diseases, genes, and countless variants of unknown
significance. This situation will not improve without capturing and harmonizing the underlying phenotypic
information; computability of this information is the bedrock for the emerging field of phenomics. From basic
science to clinical care, communities need structured ways to represent and exchange phenotypes and
disease definitions. Addressing these fundamental phenomics needs makes it possible to computationally
assess and reveal links between diseases and variants. We have previously shown how the addition of
phenotypic information using the Human Phenotype Ontology (HPO) can improve the diagnostic yield for
hard-to-diagnose patients, and HPO is therefore now a global standard for “deep phenotyping”. We have
demonstrated the applicability of deep phenotyping in the evaluation of rare diseases which have overlapping
mechanistic underpinnings with common/complex diseases as well as evolutionarily conserved mechanisms in
model organisms. Having coordinated the community and prototyped the underlying computational platforms,
we will now align both phenotype ontologies and clinical terminologies, enabling better comparison and
inference of phenotypes for improved diagnostic efficacy. We propose to develop a Phenomics-First
Resource (PFR). Specifically we will:
1. Create a community-driven framework of interoperable phenotype definitions across species (uPheno)
2. Harmonize human disease definitions with the MONDO disease alignment resource
3. Create a community-wide exchange standard for clinical and model-organism phenotypes
(Phenopackets)
4. Develop an integrated phenomics platform to provide the research (e.g. BioLink) and clinical (FHIR)
communities with programmatic access to phenomics ontologies, data, and algorithms
The dynamic suite of interlinked technologies will together leverage community-developed knowledge in order
to make variant interpretation more reliable, better provenanced, and more clinically actionable.
用于解释变异的表型学第一资源 (PFR)
基因组学是精准医学的关键;然而,尽管测序很容易,但临床解释仍然很困难。
由于相关数据(疾病、表型和变异)复杂、异质且不稳定,因此受到阻碍
此外,这些证据有时是不完整的、相互矛盾的和错误的。
经过测试,面临一长串候选疾病、基因和无数未知变体
如果不捕获和协调潜在的表型,这种情况就不会改善。
信息;这些信息的可计算性是新兴表型组学领域的基石。
从科学到临床护理,社区需要结构化的方式来表示和交换表型,
解决这些基本的表型组学需求使得计算成为可能。
我们之前已经展示了如何添加疾病和变异之间的联系。
使用人类表型本体 (HPO) 的表型信息可以提高诊断率
难以诊断的患者,因此 HPO 现在已成为“深度表型分析”的全球标准。
证明了深度表型分析在评估具有重叠的罕见疾病中的适用性
常见/复杂疾病的机制基础以及进化上保守的机制
协调了社区并制作了底层计算平台的原型,
我们现在将统一表型本体和临床术语,以便更好地进行比较和
我们建议开发表型优先的表型推断。
资源(PFR)具体来说,我们将:
1. 创建一个社区驱动的跨物种可互操作表型定义框架(uPheno)
2. 将人类疾病定义与MONDO疾病对齐资源进行协调
3. 为临床和模型生物表型创建社区范围的交换标准
(苯酚数据包)
4. 开发一个综合表型组学平台以提供研究(例如 BioLink)和临床(FHIR)
能够以编程方式访问表型学本体、数据和算法的社区
相互关联的技术的动态套件将共同利用社区开发的知识,以便
使变异解释更可靠、更有依据、更具有临床可操作性。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Response to Biesecker et al.
对 Biesecker 等人的回应
- DOI:10.1016/j.ajhg.2021.07.004
- 发表时间:2021-09-01
- 期刊:
- 影响因子:9.8
- 作者:A. Hamosh;J. Amberger;Carol A. Bocchini;J. Bodurtha;C. Bult;C. Chute;G. Cutting;Harry C. Dietz;H. Firth;R. Gibbs;W. Grody;M. Haendel;J. Lupski;J. Posey;Peter N. Robinson;L. Schriml;A. F. Scott;Nara Sobreira;D. Valle;Nan Wu;S. Rasmussen
- 通讯作者:S. Rasmussen
The Medical Action Ontology: A Tool for Annotating and Analyzing Treatments and Clinical Management of Human Disease.
医疗行动本体论:注释和分析人类疾病治疗和临床管理的工具。
- DOI:
- 发表时间:2023-07-13
- 期刊:
- 影响因子:0
- 作者:Carmody, Leigh C;Gargano, Michael A;Toro, Sabrina;Vasilevsky, Nicole A;Adam, Margaret P;Blau, Hannah;Chan, Lauren E;Gomez;Horvath, Rita;Kraus, Megan L;Ladewig, Markus S;Lewis;Lochmüller, Hanns;Matentzoglu, Nicolas A
- 通讯作者:Matentzoglu, Nicolas A
The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease.
医疗行动本体论:用于注释和分析人类疾病的治疗和临床管理的工具。
- DOI:
- 发表时间:2023-12-08
- 期刊:
- 影响因子:0
- 作者:Carmody, Leigh C;Gargano, Michael A;Toro, Sabrina;Vasilevsky, Nicole A;Adam, Margaret P;Blau, Hannah;Chan, Lauren E;Gomez;Horvath, Rita;Kraus, Megan L;Ladewig, Markus S;Lewis;Lochmüller, Hanns;Matentzoglu, Nicolas A
- 通讯作者:Matentzoglu, Nicolas A
MENDS-on-FHIR: Leveraging the OMOP common data model and FHIR standards for national chronic disease surveillance.
MENDS-on-FHIR:利用 OMOP 通用数据模型和 FHIR 标准进行国家慢性病监测。
- DOI:
- 发表时间:2023-11-22
- 期刊:
- 影响因子:0
- 作者:Essaid, Shahim;Andre, Jeff;Brooks, Ian M;Hohman, Katherine H;Hull, Madelyne;Jackson, Sandra L;Kahn, Michael G;Kraus, Emily M;Mandadi, Neha;Martinez, Amanda K;Mui, Joyce Y;Zambarano, Bob;Soares, Andrey
- 通讯作者:Soares, Andrey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MELISSA A HAENDEL其他文献
MELISSA A HAENDEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MELISSA A HAENDEL', 18)}}的其他基金
The Human Phenotype Ontology: Accelerating Computational Integration of Clinical Data for Genomics
人类表型本体论:加速基因组学临床数据的计算整合
- 批准号:
10491107 - 财政年份:2021
- 资助金额:
$ 188.84万 - 项目类别:
The Human Phenotype Ontology: Accelerating Computational Integration of Clinical Data for Genomics
人类表型本体论:加速基因组学临床数据的计算整合
- 批准号:
10681348 - 财政年份:2021
- 资助金额:
$ 188.84万 - 项目类别:
The Human Phenotype Ontology: Accelerating Computational Integration of Clinical Data for Genomics
人类表型本体论:加速基因组学临床数据的计算整合
- 批准号:
10681348 - 财政年份:2021
- 资助金额:
$ 188.84万 - 项目类别:
Improvements to the LinkML framework to support the Phenomics First open science resource
改进 LinkML 框架以支持 Phenomics First 开放科学资源
- 批准号:
10608894 - 财政年份:2021
- 资助金额:
$ 188.84万 - 项目类别:
The Human Phenotype Ontology: Accelerating Computational Integration of Clinical Data for Genomics
人类表型本体论:加速基因组学临床数据的计算整合
- 批准号:
10269338 - 财政年份:2021
- 资助金额:
$ 188.84万 - 项目类别:
A phenomics-first resource for interpretation of variants
用于解释变异的表型组学优先资源
- 批准号:
10448140 - 财政年份:2021
- 资助金额:
$ 188.84万 - 项目类别:
Adding Big Data Open Educational Resources to the ONC Health IT Curriculum
将大数据开放教育资源添加到 ONC Health IT 课程中
- 批准号:
8828784 - 财政年份:2014
- 资助金额:
$ 188.84万 - 项目类别:
Adding Big Data Open Educational Resources to the ONC Health IT Curriculum
将大数据开放教育资源添加到 ONC Health IT 课程中
- 批准号:
9132830 - 财政年份:2014
- 资助金额:
$ 188.84万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 188.84万 - 项目类别:
Connecting Latinos en Pareja: A Couples-based HIV Prevention Intervention for Latino Male Couples
连接拉丁裔与帕雷哈:针对拉丁裔男性夫妇的基于夫妇的艾滋病毒预防干预措施
- 批准号:
10706860 - 财政年份:2023
- 资助金额:
$ 188.84万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 188.84万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 188.84万 - 项目类别:
mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
- 批准号:
10638598 - 财政年份:2023
- 资助金额:
$ 188.84万 - 项目类别: