cloudSLEAP: Maximizing accessibility to deep learning-based motion capture
cloudSLEAP:最大限度地提高基于深度学习的动作捕捉的可访问性
基本信息
- 批准号:10643661
- 负责人:
- 金额:$ 262.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptionAnimal BehaviorAnimal ModelAnimalsBRAIN initiativeBehaviorBehavioralBody partBrainCloud ComputingCloud ServiceCollaborationsCommunicationCommunitiesComplexComputer HardwareComputer softwareDataData SetDedicationsDemocracyDependenceDevelopmentDocumentationEcosystemEducational ActivitiesEnsureEnvironmentEquityEthologyEventFutureGoalsIndustryInformaticsInfrastructureInstitutionInternetInvestmentsLabelLibrariesModelingModernizationMotionNeurosciencesOccupationsOnline SystemsOutcomeOutputPersonsPostureQualifyingResearchResearch PersonnelResolutionResourcesRunningServicesSoftware EngineeringStandardizationSystemTechnical ExpertiseTechnologyTestingTrainingTraining and EducationTraining and InfrastructureVisualizationWorkcloud basedcomputer infrastructurecomputerized toolscomputing resourcescostcost effectivedata archivedata formatdata repositorydata standardsdeep learningexperiencegigabytegraphical user interfacelearning strategylight weightmeetingsnext generationopen sourcepublic repositoryrecruittoolusabilityvirtualvirtual machineweb platform
项目摘要
cloudSLEAP – PROJECT SUMMARY/ABSTRACT
Understanding how the brain produces complex behavior is a central goal of neuroscience, but quantifying
behavior is technically challenging, particularly in unrestrained and naturalistic settings. Tools that are able to
overcome these limitations leverage deep learning to achieve robust markerless motion capture, enabling
characterization of behavior through precise positional tracking of body parts from standard videos of behavior.
Unfortunately, like most deep learning systems, existing pose tracking software requires technical expertise to
manage the complex software dependencies required for deep learning, and investment in expensive
computational hardware (GPUs), both of which curtail equitable access to this technology. This project
proposes cloudSLEAP, a platform that builds on the widely used multi-animal pose tracking software SLEAP to
address these barriers by providing the infrastructure necessary to run the entire pose tracking workflow
through cloud-based systems. This platform enables annotation, visualization and sharing pose tracking
datasets directly from the browser, eliminating the need for installation and management of desktop-based
software. cloudSLEAP will support data formats from all currently existing tools for pose tracking, and will be
integrated with existing data standards and repositories such as NeurodataWithoutBorders and DANDI to
ensure that all outputs of cloudSLEAP are standardized and FAIR-compliant. Users will be able to use
cloudSLEAP to train pose tracking models on their own data through a cloud-based job orchestration system,
eliminating the complexity of deep learning library dependencies. Leveraging the highly efficient model
configurations provided by SLEAP, cloudSLEAP will provide users with free computational resources on the
cloud to train pose models. This capability effectively eliminates the need for investment in local GPU
hardware, thereby removing the single biggest barrier to entry for researchers from under-resourced
institutions. The entire platform will be developed as open-source software on public repositories from the start,
and all data used for testing and development will be freely available. A core goal for this project is to ensure
that cloudSLEAP maximizes accessibility to behavior quantification technology to the widest range of
practitioners. To this end, the first aim of this proposal will be to establish a broad-based community of beta
testers that represents the diversity of institutions in the BRAIN Initiative and wider neuroscience community.
Beta testers will be invited to collaborate throughout development via regular virtual Town Hall meetings,
in-person events, direct communication channels and open discussion forums. These efforts will additionally
produce documentation and didactic materials that will be used for training and education activities. By
ensuring that diverse perspectives are included from the very onset of the project, cloudSLEAP will enable truly
equitable access and dissemination of a crucial part of the modern neuroscience toolkit.
cloudSLEAP – 项目摘要/摘要
了解大脑如何产生复杂的行为是神经科学的核心目标,但量化
行为在技术上具有挑战性,特别是在不受限制和自然的环境中。
克服这些限制,利用深度学习实现强大的无标记动作捕捉,从而实现
通过从标准行为视频中精确跟踪身体部位的位置来表征行为。
不幸的是,与大多数深度学习系统一样,现有的姿势跟踪软件需要技术专业知识才能
管理深度学习所需的复杂软件依赖项以及昂贵的投资
计算硬件(GPU),两者都限制了该项目的公平使用。
提出了cloudSLEAP,这是一个基于广泛使用的多动物姿势跟踪软件SLEAP构建的平台
通过提供运行整个姿势跟踪工作流程所需的基础设施来解决这些障碍
通过基于云的系统,该平台可以实现注释、可视化和共享姿势跟踪。
直接从浏览器获取数据集,无需安装和管理基于桌面的
cloudSLEAP 软件将支持当前所有现有姿势跟踪工具的数据格式,并将
与现有数据标准和存储库(例如 NeurodataWithoutBorders 和 DANDI)集成
确保cloudSLEAP的所有输出都是标准化的并且符合FAIR标准,用户将能够使用。
cloudSLEAP 通过基于云的作业编排系统根据自己的数据训练姿势跟踪模型,
利用高效模型
SLEAP提供的配置,cloudSLEAP将为用户提供免费的计算资源
此功能有效地消除了对本地 GPU 的投资需求。
硬件,从而消除了资源不足的研究人员进入的最大障碍
整个平台将从一开始就作为公共存储库上的开源软件进行开发,
用于测试和开发的所有数据都将免费提供,该项目的核心目标是确保。
cloudSLEAP 最大限度地提高了最广泛的行为量化技术的可访问性
为此,该提案的首要目标是建立一个基础广泛的 beta 社区。
代表 BRAIN Initiative 和更广泛的神经科学界机构多样性的测试人员。
Beta 测试人员将被邀请通过定期的虚拟市政厅会议在整个开发过程中进行协作,
此外,还包括现场活动、直接沟通渠道和开放讨论论坛。
制作用于培训和教育活动的文档和教学材料。
确保从项目一开始就包含不同的观点,cloudSLEAP 将真正实现
公平获取和传播现代神经科学工具包的重要组成部分。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast and Efficient Root Phenotyping via Pose Estimation.
通过姿势估计进行快速高效的根表型分析。
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Berrigan, Elizabeth M;Wang, Lin;Carrillo, Hannah;Echegoyen, Kimberly;Kappes, Mikayla;Torres, Jorge;Ai;McCoy, Erica;Shane, Emily;Copeland, Charles D;Ragel, Lauren;Georgousakis, Charidimos;Lee, Sanghwa;Reynolds, Dawn;Talgo, Ave
- 通讯作者:Talgo, Ave
Fast and efficient root phenotyping via pose estimation.
通过姿态估计快速有效地进行根表型分析。
- DOI:
- 发表时间:2023-11-21
- 期刊:
- 影响因子:0
- 作者:Berrigan, Elizabeth M;Wang, Lin;Carrillo, Hannah;Echegoyen, Kimberly;Kappes, Mikayla;Torres, Jorge;Ai;McCoy, Erica;Shane, Emily;Copeland, Charles D;Ragel, Lauren;Georgousakis, Charidimos;Lee, Sanghwa;Reynolds, Dawn;Talgo, Ave
- 通讯作者:Talgo, Ave
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talmo D. Pereira其他文献
Publisher Correction: SLEAP: A deep learning system for multi-animal pose tracking
出版商更正:SLEAP:用于多动物姿势跟踪的深度学习系统
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:48
- 作者:
Talmo D. Pereira;Nathaniel Tabris;Arie Matsliah;David Turner;Junyu Li;Shruthi Ravindranath;Eleni S. Papadoyannis;Edna Normand;David S. Deutsch;Z. Y. Wang;Grace C. McKenzie;C. Mitelut;Marielisa Diez Castro;John D’Uva;Mikhail Kislin;D. Sanes;Sarah D. Kocher;S. H. Wang;Annegret L. Falkner;J. Shaevitz;Mala Murthy - 通讯作者:
Mala Murthy
Fast animal pose estimation using deep neural networks
使用深度神经网络快速估计动物姿势
- DOI:
10.1038/s41592-018-0234-5 - 发表时间:
2018-05-30 - 期刊:
- 影响因子:48
- 作者:
Talmo D. Pereira;Diego E. Aldarondo;Lindsay Willmore;Mikhail Kislin;S. H. Wang;Mala Murthy;J. Shaevitz - 通讯作者:
J. Shaevitz
Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics
Keypoint-MoSeq:通过将点跟踪链接到姿态动力学来解析行为
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Caleb Weinreb;Mohammed Abdal Monium Osman;Libby Zhang;Sherry Lin;Jonah E Pearl;Sidharth Annapragada;Elizabeth Conlin;Winthrop F. Gillis;Maya Jay;Shaokai Ye;Alexander Mathis;Mackenzie W. Mathis;Talmo D. Pereira;Scott W. Linderman;S. R. Datta - 通讯作者:
S. R. Datta
Open-Source Tools for Behavioral Video Analysis: Setup, Methods, and Development
用于行为视频分析的开源工具:设置、方法和开发
- DOI:
10.48550/arxiv.2204.02842 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Kevin Luxem;Jennifer J. Sun;S. P. Bradley;K. Krishnan;Talmo D. Pereira;Eric A. Yttri;Jan Zimmermann;Mark Laubach - 通讯作者:
Mark Laubach
Toward Community-Driven Big Open Brain Science: Open Big Data and Tools for Structure, Function, and Genetics.
迈向社区驱动的大开放脑科学:开放大数据和结构、功能和遗传学工具。
- DOI:
10.1146/annurev-neuro-100119-110036 - 发表时间:
2020-04-13 - 期刊:
- 影响因子:0
- 作者:
Adam S. Charles;Benjamin Falk;N. Turner;Talmo D. Pereira;D. Tward;B. Pedigo;Jaewon Chung;R. Burns - 通讯作者:
R. Burns
Talmo D. Pereira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Combining sources of information to improve HIV pre-exposure prophylaxis
结合信息来源改善艾滋病毒暴露前预防
- 批准号:
10700193 - 财政年份:2023
- 资助金额:
$ 262.32万 - 项目类别:
Resources and Workforce Development for Research on NIH/NIAID High Priority Pathogens at the University of Missouri Regional Biocontainment Laboratory
密苏里大学区域生物防护实验室 NIH/NIAID 高优先级病原体研究的资源和劳动力发展
- 批准号:
10793827 - 财政年份:2023
- 资助金额:
$ 262.32万 - 项目类别:
Shared Resource Core 2: Clinical Artificial Intelligence Core
共享资源核心2:临床人工智能核心
- 批准号:
10712296 - 财政年份:2023
- 资助金额:
$ 262.32万 - 项目类别:
2023 Neurotrophic Mechanisms in Health and Disease
2023 健康与疾病中的神经营养机制
- 批准号:
10654336 - 财政年份:2023
- 资助金额:
$ 262.32万 - 项目类别: