Nuclear mechanobiology in confined migration

受限迁移中的核力学生物学

基本信息

  • 批准号:
    10642130
  • 负责人:
  • 金额:
    $ 4.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Project Summary Cell migration is essential for numerous physiological processes, including development, tissue homeostasis, and wound healing. At the same time, cell migration enables tumor cells to invade other tissues, enter/exit the circulation, and spread to distant sites in the body to form metastases. While these facts have motivated research on cell migration for many decades, one aspect that has only recently received attention is the physical challenge that cells face during migration in three-dimensional (3D) environments, and the resulting impact on cellular structure and function. In tissues, cells frequently move through tight spaces that require substantial deformation of the cell nucleus, which is the largest and stiffest organelle. The associated mechanical stress can result in nuclear envelope rupture, DNA damage, and changes in genomic organization. Many questions, however, remain, including the underlying molecular mechanisms, the functional consequences, and the variability across different cell lines. The central goal of this proposal is to identify the characteristic changes in chromatin organization associated with confined migration, determine the molecular mechanisms responsible for the mechanically-induced changes in chromatin organization and DNA damage, and assess the functional consequences of these events. To achieve this goal, we have developed novel experimental platforms that enable extended live-cell imaging of cells migrating through precisely-defined microenvironments while visualizing nuclear deformation, nuclear envelope rupture, DNA damage, and chromatin modifications. These platforms will be paired with molecular biology approaches and assays for genome-wide analysis of changes in 3D chromatin organization and gene expression in a panel of well-characterized cell lines representing both tumorigenic and non-tumorigenic cells. In the first aim, we will identify migration-induced changes in chromatin organization and gene expression, determine the molecular mechanisms responsible for altered chromatin organization, and assess the functional consequences of the altered chromatin organization. In the second aim, we will identify the molecular mechanisms for DNA damage during confined migration and determine the impact of migration-induced DNA damage on cell viability, cell cycle progression, and senescence. We will focus our studies on the earliest events resulting from altered chromatin organization and DNA damage, which we expect to exhibit less variation across multiple cell types than longer-term effects. Our ultimate goal is to uncover general principles in nuclear mechanobiology that will lead to an improved understanding of the impact of migration through tight spaces on cellular function and genomic stability, including the activation or suppression of specific transcriptional programs that may further enhance cell migration or modulate other cellular functions. Insights gained from these studies may help guide therapeutic approach for a variety of clinical conditions, from wound healing and immune-responses to therapies targeting metastatic tumor cells.
项目概要 细胞迁移对于许多生理过程至关重要,包括发育、组织稳态、 和伤口愈合。同时,细胞迁移使肿瘤细胞能够侵入其他组织,进入/退出 循环,并扩散到体内较远的部位形成转移。虽然这些事实激发了研究 关于细胞迁移数十年的研究,直到最近才受到关注的一个方面是物理挑战 细胞在三维 (3D) 环境中迁移过程中所面临的问题,以及由此产生的对细胞的影响 结构和功能。在组织中,细胞经常穿过需要大幅变形的狭小空间 细胞核是最大、最坚硬的细胞器。相关的机械应力会导致 核膜破裂、DNA 损伤和基因组组织变化。然而诸多疑问, 仍然存在,包括潜在的分子机制、功能后果以及跨区域的变异性 不同的细胞系。该提案的中心目标是确定染色质的特征变化 与受限迁移相关的组织,确定负责的分子机制 机械引起的染色质组织变化和 DNA 损伤,并评估 这些事件的功能后果。为了实现这一目标,我们开发了新颖的实验 能够对在精确定义的微环境中迁移的细胞进行扩展活细胞成像的平台 同时可视化核变形、核膜破裂、DNA 损伤和染色质修饰。 这些平台将与分子生物学方法和检测相结合,用于全基因组分析 一组已充分表征的细胞系中 3D 染色质组织和基因表达的变化 代表致瘤细胞和非致瘤细胞。在第一个目标中,我们将确定迁移引起的 染色质组织和基因表达的变化,确定负责的分子机制 改变的染色质组织,并评估改变的染色质组织的功能后果。 在第二个目标中,我们将确定限制迁移和迁移过程中 DNA 损伤的分子机制。 确定迁移诱导的 DNA 损伤对细胞活力、细胞周期进程和衰老的影响。 我们将把研究重点放在染色质组织改变和 DNA 损伤引起的最早事件上, 我们预计,与长期影响相比,多种细胞类型之间的变化会更小。我们的最终目标是 揭示核力学生物学的一般原理,从而加深对核力学生物学的理解 通过狭窄空间迁移对细胞功能和基因组稳定性的影响,包括激活或 抑制可能进一步增强细胞迁移或调节其他功能的特定转录程序 细胞功能。从这些研究中获得的见解可能有助于指导各种临床的治疗方法 从伤口愈合和免疫反应到针对转移性肿瘤细胞的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Lammerding其他文献

Jan Lammerding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Lammerding', 18)}}的其他基金

2022 Intermediate Filaments Gordon Research Conference and Seminar
2022年中间长丝戈登研究会议暨研讨会
  • 批准号:
    10469043
  • 财政年份:
    2022
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear mechanobiology in confined migration
受限迁移中的核力学生物学
  • 批准号:
    10389559
  • 财政年份:
    2021
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear mechanobiology in confined migration (Equipment Supplement 2023)
受限迁移中的核力学生物学(设备增刊2023)
  • 批准号:
    10796133
  • 财政年份:
    2020
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear mechanobiology in confined migration
受限迁移中的核力学生物学
  • 批准号:
    10350671
  • 财政年份:
    2020
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear mechanobiology in confined migration
受限迁移中的核力学生物学
  • 批准号:
    10724706
  • 财政年份:
    2020
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear mechanobiology in confined migration
受限迁移中的核力学生物学
  • 批准号:
    10574624
  • 财政年份:
    2020
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear mechanics and mechanotransduction in muscular laminopathies
肌肉核纤层蛋白病的核力学和机械转导
  • 批准号:
    8719155
  • 财政年份:
    2007
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear mechanics and mechanotransduction in muscular laminopathies
肌肉核纤层蛋白病的核力学和机械转导
  • 批准号:
    8413555
  • 财政年份:
    2007
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear-cytoskeletal coupling in muscular laminopathies
肌肉核纤层蛋白病中的核细胞骨架耦合
  • 批准号:
    7582243
  • 财政年份:
    2007
  • 资助金额:
    $ 4.35万
  • 项目类别:
Nuclear-cytoskeletal coupling in muscular laminopathies
肌肉核纤层蛋白病中的核细胞骨架耦合
  • 批准号:
    8044806
  • 财政年份:
    2007
  • 资助金额:
    $ 4.35万
  • 项目类别:

相似国自然基金

智能车定位地图匹配方法中的交叉注意力机制研究
  • 批准号:
    62373250
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于小波交叉注意力机制的单幅图像可变光圈散焦增强研究
  • 批准号:
    62301332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自注意力机制的脑电信号智能特征提取芯片关键技术
  • 批准号:
    62374121
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
复相干统计融合全局注意力模型的SAR微弱痕迹检测方法
  • 批准号:
    62301403
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于卷积-自注意力混合结构的脑静脉血栓疾病智能诊断模型研究
  • 批准号:
    62306190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accelerated Cerebrovascular Aging in a Fibrillin-1 Mutated Mouse Model
Fibrillin-1 突变小鼠模型加速脑血管老化
  • 批准号:
    10727231
  • 财政年份:
    2023
  • 资助金额:
    $ 4.35万
  • 项目类别:
Irreversible Electroporation (IRE) Combined with CD40 Agonism as In Situ Vaccine Therapy for Pancreatic Cancer
不可逆电穿孔 (IRE) 联合 CD40 激动作为胰腺癌原位疫苗治疗
  • 批准号:
    10718057
  • 财政年份:
    2023
  • 资助金额:
    $ 4.35万
  • 项目类别:
Controlling Adipocyte-Myofibroblast Interactions to Improve Healing
控制脂肪细胞-肌成纤维细胞相互作用以改善愈合
  • 批准号:
    10582858
  • 财政年份:
    2023
  • 资助金额:
    $ 4.35万
  • 项目类别:
Characterizing breast cancer invasion and proliferation when co-aggregated with adipocytes in multicellular spheroids created with a custom bioreactor to augment cell-cell connectivity.
当与多细胞球体中的脂肪细胞共聚集时,表征乳腺癌的侵袭和增殖,该多细胞球体是用定制生物反应器创建的,以增强细胞间的连接。
  • 批准号:
    10334113
  • 财政年份:
    2022
  • 资助金额:
    $ 4.35万
  • 项目类别:
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10358980
  • 财政年份:
    2022
  • 资助金额:
    $ 4.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了