Exploring O-glycoproteomics to prevent metabolic radioresistance in the tumor microenvironment

探索O-糖蛋白组学以预防肿瘤微环境中的代谢放射抗性

基本信息

  • 批准号:
    10684199
  • 负责人:
  • 金额:
    $ 15.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Radiotherapy (RT) is often the only curative option for patients with inoperable tumors. However, radiation is also known to impair tumor metabolism, leading to radioresistance, the main reason for RT failure. Metabolic reprogramming (MR) in cancer is defined as the ability of the tumor to rewire its energy to fulfill the needs for tumorigenesis and progression. Our group observed for the first time that MR toward the Hexosamine Biosynthesis Pathway (HBP), an understudied glucose pathway leading to protein glycosylation, is associated with poor survival in the lung adenocarcinoma. Precisely, we showed that this metabolic switch happens primarily in Cancer-Associated Fibroblasts (CAFs). This suggests that CAFs redirect their glucose toward HBP, which increases O-glycosylation, a Post-Translational Modification (PTM) known to modulate radioresistance. However, very little is known about 1) which proteins are O-glycosylated after MR toward HBP and 2) how these PTMs affect the cellular behavior and modulate radioresistance. My preliminary results show that metabolic cooperation between cancer and stromal cells alters protein O-glycosylation in both cell types. Therefore, I hypothesize that tumor-stroma crosstalk in the Tumor Microenvironment (TME), leading to changes in the O-glycoproteome, plays a role in radioresistance. To validate this hypothesis, we developed a novel approach that precisely measures the outcome of MR towards HBP (e.g., O-glycoproteome) in the context of tumor-stroma crosstalk. We propose to apply this technique to tumor-stroma organoids designated here as “assembloids” that recapitulate metabolically heterogeneous cell neighborhoods and characterize their O-glycoproteome before and after RT. First, to visualize HBP metabolic heterogeneity in the TME, I will construct an in-situ map of the primary tumor compartments (endothelial, malignant, fibroblast, and immune) enriched for HBP metabolic markers and glycoform structures, using CODEX. CODEX is a cutting- edge multiplexed imaging method that allows for single-cell quantification of up to 50 markers in situ (aim 1). Then, I will deconvolute cell neighborhoods using machine learning and clustering biocomputational approaches to quantify and inform which neighborhoods are active regions of protein O-glycosylation. In aim 2, I will recapitulate HBP-enriched cell neighborhoods using a 3D assembloid model, irradiate them, then characterize metabolic radioresistance patterns using CODEX. Lastly, in aim 3, I will analyze the O-glycoproteome and spatial information of radioresistant assembloids. The O-glycoproteins or upstream drivers to O-glycosylation involved in critical tumor-stroma interactions will be inhibited in an attempt to restore radiosensitivity. The resulting data will generate the first hypothesis synthesis tool exploring an understudied dimension of cell signaling, the O- glycoproteome. They will lead to the discovery of new molecular targets involved in both tumor metabolism and stromal interactions with the primary goal of improving RT response in cancer patients with inoperable tumors.
项目摘要 放射疗法(RT)通常是无法手术肿瘤患者的唯一治疗选择。但是,辐射是 也已知会损害肿瘤代谢,导致放射性,这是RT衰竭的主要原因。代谢 癌症中的重编程(MR)定义为肿瘤重新连接能量满足需求的能力 肿瘤发生和进展。我们的小组首次观察到己胺先生 生物合成途径(HBP)是一种导致蛋白质糖基化的葡萄糖途径,是相关的 在肺腺癌中生存不良。确切地说,我们表明这种代谢开关发生了主要 在癌症相关的成纤维细胞(CAF)中。这表明CAFS将其葡萄糖重定向到HBP,这是 增加O-糖基化,这是一种已知可调节辐射抗性的后翻译后修饰(PTM)。 然而,关于1)MR朝向HBP和2的蛋白众所周知1)。 这些PTM如何影响细胞行为并调节放射线。我的初步结果显示 癌症和基质细胞之间的代谢合作改变了两种细胞类型的蛋白O-糖基化。 因此,我假设肿瘤微环境(TME)中的肿瘤 - 细胞瘤串扰,导致 O-糖蛋白酶的变化在辐射抗性中起作用。为了验证这一假设,我们发展了 一种精确衡量MR对HBP(例如O-糖蛋白酶)的结果的新方法 肿瘤 - 基质串扰的背景。我们建议将此技术应用于肿瘤细节器官 在此指定为“组装”,该“组装”概括了代谢上异质的细胞社区和 在RT之前和之后表征其O-糖蛋白酶。首先,可视化HBP代谢异质性 TME,我将构建原发性肿瘤室的原位图(内皮,恶性,成纤维细胞和 使用法典富含HBP代谢标记和糖型结构的免疫)。 codex是一种替代 边缘多路复用成像方法,可允许单细胞量化多达50个原位标记(AIM 1)。 然后,我将使用机器学习和聚类生物计算方法去涉及细胞社区 量化和告知哪些邻居是蛋白O-糖基化的活性区域。在AIM 2中,我会 使用3D装配模型概括了富含HBP的细胞邻域,然后进行照射,然后表征 使用法典的代谢辐射模式。最后,在AIM 3中,我将分析O-糖蛋白酶和空间 放射性组件的信息。涉及O-糖基化的O-糖蛋白或上游驱动器 在关键的肿瘤中,将抑制肿瘤的相互作用,以恢复放射线敏感性。结果数据 将生成第一个假设合成工具探索细胞信号传导的知识维度,即O- 糖蛋白酶。它们将导致发现与肿瘤代谢和 基质相互作用与改善无法手术肿瘤癌症患者的RT反应的主要目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Gina Bouchard的其他基金

Exploring O-glycoproteomics to prevent metabolic radioresistance in the tumor microenvironment
探索O-糖蛋白组学以预防肿瘤微环境中的代谢放射抗性
  • 批准号:
    10449869
    10449869
  • 财政年份:
    2022
  • 资助金额:
    $ 15.78万
    $ 15.78万
  • 项目类别:

相似国自然基金

32P-可降解微球调控TAM-FABP1细胞群的脂质代谢对肝细胞癌免疫微环境的影响及机制
  • 批准号:
    82372065
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
冷泉硫酸盐还原菌碳硫代谢影响微生物群落演替的作用机制
  • 批准号:
    42306171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
儿童脂肪、肌肉构成及相互作用对心血管代谢异常发生风险的影响及机制研究
  • 批准号:
    82373589
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DJ-1通过影响UCP1稳定性调控机体代谢稳态的机制研究
  • 批准号:
    32371194
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
桑叶多糖与肠道菌群互作产物通过影响肝miRNA调控脂代谢的作用机制研究
  • 批准号:
    32372245
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-Omics And Synbio Enabled Discovery Of Antifungal Fernene Triterpenes
多组学和 Synbio 发现抗真菌蕨烯三萜
  • 批准号:
    10601431
    10601431
  • 财政年份:
    2023
  • 资助金额:
    $ 15.78万
    $ 15.78万
  • 项目类别:
Targeting the endometrial stem cell niche inendometriosis
靶向子宫内膜异位症中的子宫内膜干细胞生态位
  • 批准号:
    10517930
    10517930
  • 财政年份:
    2022
  • 资助金额:
    $ 15.78万
    $ 15.78万
  • 项目类别:
Targeting the endometrial stem cell niche inendometriosis
靶向子宫内膜异位症中的子宫内膜干细胞生态位
  • 批准号:
    10680444
    10680444
  • 财政年份:
    2022
  • 资助金额:
    $ 15.78万
    $ 15.78万
  • 项目类别:
Exploring O-glycoproteomics to prevent metabolic radioresistance in the tumor microenvironment
探索O-糖蛋白组学以预防肿瘤微环境中的代谢放射抗性
  • 批准号:
    10449869
    10449869
  • 财政年份:
    2022
  • 资助金额:
    $ 15.78万
    $ 15.78万
  • 项目类别:
Effects of Polymeric Mucin Expression on Lung Carcinogenesis
聚合粘蛋白表达对肺癌发生的影响
  • 批准号:
    10369926
    10369926
  • 财政年份:
    2022
  • 资助金额:
    $ 15.78万
    $ 15.78万
  • 项目类别: