Broad Bandwidth Transducers for High Resolution Information Rich IVUS
宽带宽传感器可提供高分辨率信息丰富的 IVUS
基本信息
- 批准号:10642851
- 负责人:
- 金额:$ 37.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimalsAreaArterial Fatty StreakBiological MarkersBlood VesselsCadaverCardiovascular systemCarotid ArteriesCarotid Artery PlaquesCathetersClassificationClinicalClinical ResearchComputer softwareCoronaryCoronary ArteriosclerosisCustomDecision MakingDevicesDiagnosisDisadvantagedDissectionEnsureEvaluationEventFlushingFocused UltrasoundFrequenciesFriendsFutureGeometryHistologyImageInterventionKidney DiseasesLengthMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMethodsMorphologyNoiseOptical Coherence TomographyOryctolagus cuniculusOutputPatientsPenetrationPerformancePharmacotherapyPhysiciansPolychlorinated BiphenylsPolymersPredictive FactorPrevalenceProceduresProductionReaderResearchResearch PersonnelResolutionRisk FactorsRoleRotationSignal TransductionStentsStructureSystemTechnologyTestingThickThinnessThrombosisTissuesTransducersTumor DebulkingUltrasonic TransducerUltrasonicsUltrasonographyVisualizationWorkcommercializationcoronary eventcostdeep learningdesignharmonic distortionimage visualizationimaging biomarkerimaging modalityimaging systemimprovedinnovationintegrated circuitinterestmachine learning algorithmmachine learning methodmanufacturemicroelectronicsnovelprinted circuit boardsoftware developmentsuccesstooltreatment planningultrasoundvirtualvolcano
项目摘要
Abstract
Intra-coronary imaging is a powerful clinical tool for decision making, treatment planning, and assessment of
stent deployment. It is also a powerful research tool for plaque progression/regression, drug treatments, and
device interventions. There are clear advantages and disadvantages of common intravascular imaging methods.
Intravascular ultrasound (IVUS) provides good resolution and allows one to measure lumen narrowing, wall
thickening, atheroma burden, and to a lesser extent stent deployment. Using spectral analysis of the RF signal
and machine learning, our group has developed software, which was later commercialized, to automatically
classify atherosclerotic tissues using IVUS images. Intravascular optical coherence tomography (IVOCT) has
better resolution than IVUS, enabling visualization and analysis of stent struts, thin caps of vulnerable plaques,
thrombosis, and plaque erosion. IVUS has better tissue penetration than IVOCT, enabling one to assess total
plaque burden. In addition, IVUS, unlike IVOCT, does not require one to flush the blood from the vessel prior to
imaging, a significant issue for patients, given the prevalence of kidney disease. These limitations suggest an
unmet need for a new intravascular imaging modality with attributes of both IVUS and IVOCT.
We will create a novel intravascular, high frequency, broadband, focused ultrasound system (H-IVUS), which
will address clinical needs identified for IVOCT and conventional IVUS. H-IVUS will have near-IVOCT resolution
to enable identification of critical small structures (e.g., thin caps and stent struts), while maintaining the ability
of ultrasound to penetrate tissue and evaluate soft plaque burden. It will have immediate clinical impact by ena-
bling clinicians to plan and optimize procedures that have already shown to benefit from intravascular imaging:
determine true vessel size, identify stent landing zones to choose correct stent lengths, identify plaque morphol-
ogies to guide debulking, detect edge dissection, determine stent malapposition, and detect thin caps. In addi-
tion, the high bandwidth of H-IVUS provides both fundamental and harmonic bands, which are expected to im-
prove tissue classification, as determined by us in carotid arteries. We will use broadband wavelet analysis of
RF, spatial structures in images, and machine learning to determine if wideband H-IVUS can provide improved
segmentation to improve recognition of the important clinical landmarks and provide superior automated plaque
classification over current VH IVUS®, which uses only narrow RF-fundamental-band stationary spectral analysis.
In addition, our manufacturing-friendly design should greatly reduce cost, thereby limiting this barrier to utiliza-
tion. Specifically, we will develop a catheter-based H-IVUS PCB using a focused polymeric ultrasonic transducer;
develop algorithms which utilize broadband RF and harmonic imaging to analyze tissue types w and rigorously
compare results to conventional IVUS and IVOCT. Our research will provide numerous innovations and enable
creation of a product to disrupt intracoronary imaging.
抽象的
冠状动脉内成像是一种强大的临床工具,可用于决策、治疗计划和评估
它也是斑块进展/消退、药物治疗和治疗的强大研究工具。
常见的血管内成像方法有明显的优点和缺点。
血管内超声 (IVUS) 提供良好的分辨率,可测量管腔变窄、管壁
增厚、粥样斑块负担以及在较小程度上使用射频信号的频谱分析。
和机器学习,我们组开发了软件,后来商业化了,可以自动
使用 IVUS 图像对动脉粥样硬化组织进行分类。
比 IVUS 具有更好的分辨率,能够对支架支柱、易损斑块的薄帽进行可视化和分析,
IVUS 比 IVOCT 具有更好的组织穿透性,因此可以评估总体情况。
此外,与 IVOCT 不同,IVUS 不需要在治疗前冲洗血管中的血液。
鉴于肾脏疾病的流行,影像学检查对于患者来说是一个重要问题。
对具有 IVUS 和 IVOCT 属性的新型血管内成像模式的需求尚未得到满足。
我们将创建一种新型血管内、高频、宽带、聚焦超声系统(H-IVUS),
将满足 IVOCT 确定的临床需求,而传统的 IVUS 将具有接近 IVOCT 的分辨率。
能够识别关键的小型结构(例如薄盖和支架支柱),同时保持能力
超声穿透组织并评估软斑块负荷将产生直接的临床影响。
能够规划和优化已证明可受益于血管内成像的手术:
确定真实的血管尺寸,识别支架着陆区域以选择正确的支架长度,识别斑块吗啡-
指导减灭术、检测边缘剥离、确定支架贴壁不良和检测薄帽。
化,H-IVUS 的高带宽提供了基波和谐波频带,预计这些频带将增强
证明我们在颈动脉中确定的组织分类,我们将使用宽带小波分析。
RF、图像中的空间结构和机器学习,以确定宽带 H-IVUS 是否可以提供改进的
分割以提高对重要临床标志的识别并提供卓越的自动化斑块
与当前 VH IVUS® 相比的分类,后者仅使用窄射频基带静态频谱分析。
此外,我们的制造友好型设计应大大降低成本,从而限制利用这一障碍
具体来说,我们将使用聚焦聚合物超声换能器开发基于导管的 H-IVUS PCB;
开发利用宽带射频和谐波成像的算法来分析组织类型并严格
将结果与传统 IVUS 和 IVOCT 进行比较,我们的研究将提供大量创新并实现这一点。
开发一种破坏冠状动脉内成像的产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON J FLEISCHMAN其他文献
AARON J FLEISCHMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON J FLEISCHMAN', 18)}}的其他基金
Broad Bandwidth Transducers for High Resolution Information Rich IVUS
宽带宽传感器可提供高分辨率信息丰富的 IVUS
- 批准号:
10447462 - 财政年份:2022
- 资助金额:
$ 37.03万 - 项目类别:
相似国自然基金
加速器磁铁励磁电源扰动物理机制和观测抑制算法的研究
- 批准号:12305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向移动物联网的高效数据查询机制与算法研究
- 批准号:62072402
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
考虑充电站选址和容量限制的电动物流车辆路径问题研究
- 批准号:71901177
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
面向小动物模型的功能PAT多生理参数定量成像方法
- 批准号:61901342
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 37.03万 - 项目类别: