Investigate the mechanisms underlying microRNA-146a activity in regulation of foreign body response to biomaterials
研究 microRNA-146a 活性调节生物材料异物反应的机制
基本信息
- 批准号:10641032
- 负责人:
- 金额:$ 71.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-10 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAdhesionsAffectAlginatesAtomic Force MicroscopyBiocompatible MaterialsBone MarrowCell fusionCell physiologyCellsCessation of lifeChronicCicatrixCollagenConditioned ReflexCuesDataDevelopmentDevicesDiabetic mouseDiseaseEncapsulatedExtracellular MatrixFailureFamilyFibrosisForeign BodiesForeign-Body Giant CellsGene ExpressionGenerationsGeneticGoalsHumanHydrogelsImplantInflammationInflammatoryIon ChannelIslets of LangerhansKnock-outKnockout MiceLaboratoriesLinkMacrophageMacrophage ActivationMediatingMedicalMedical DeviceMicroRNAsMicrocapsules drug delivery systemModelingMolecularMorbidity - disease rateMusOrganPIK3CA genePathogenesisPathway interactionsPatientsPerformancePhagocytosisPhosphatidylinositolsPhosphotransferasesPlayProcessProtein IsoformsProteinsRegulationRegulator GenesReportingResearchRoleSeveritiesShapesTRPV channelTestingTissuesTraction Force MicroscopyUntranslated RNAVanilloidWorkcell motilityfibrogenesisimplantationimprovedin vitro Modelin vivoinflammatory markerinsightintraperitonealisletloss of functionmechanical signalmechanical stimulusmechanotransductionmortalitymouse modelnovelnovel strategiesreceptorreconstitutionresponsesubcutaneoustherapeutic miRNAtherapeutically effectivetranscriptome sequencing
项目摘要
Project Summary
Implantation of biomaterials and devices often leads to the development of a foreign body response (FBR), a chronic
inflammatory condition that can ultimately lead to implant failure, which may cause harm to or death of the patient.
The molecular mechanisms underlying the FBR remain poorly understood. Improved understanding of the molecular
mechanisms underlying the generation of FBR is the most important step for the development of novel and effective
therapeutic strategies that eliminate or reduce the FBR. Macrophages are central to development and progression of
the FBR. They participate in the expression of inflammatory proteins, formation of destructive foreign body giant
cells (FBGCs), remodeling of the extracellular matrix, and encapsulation of the implant. Emerging data support a
critical role for a mechanical signal, e.g., matrix stiffness, in macrophage activation. MicroRNAs (miRs) are
endogenous, small, non-coding RNAs that have emerged as powerful regulators of gene expression in numerous
cellular processes including macrophage activation, cell fusion, inflammation, and fibrosis. The function of specific
miRs in regulation of FBR to biomaterials is uncertain; specifically, it remains an open question whether matrix
stiffness regulates miR expression to drive FBR. These gaps pose a significant barrier to progress in the FBR field.
In recent, exciting preliminary data, we obtained evidence that miR-146a may be a negative regulator of FBR to
biomaterials. Specifically, we found that: 1) miR-146a expression levels decreased in the implant-adhered tissues in
a subcutaneous (s.c) implantation model, which correlated with increased macrophage accumulation, FBGC
formation, and collagen accumulation; 2) miR-146a deletion in mice exacerbated FBR processes in a s.c
implantation model; 3) the severity of the in vivo macrophage accumulation at the tissue-implant interface was
dependent on the stiffness of the implant; 4) genetic ablation of miR-146a augmented macrophage adhesion and
spreading on stiff matrix, FBGC formation, and inflammation in macrophages, and 5) genetic ablation of TRPV4, an
ion channel in the transient receptor potential vanilloid family, inhibited development of implant-adhered tissue
stiffness under FBR as determined by Atomic Force Microscopy. Further preliminary data suggested an association
between matrix stiffness, miR-146a activity, and TRPV4, under FBR conditions. The objective of this proposal is to
define the role of miR-146a in the FBR, and to elucidate the underlying molecular mechanisms. Based on our
preliminary data, our central hypothesis is that miR-146a modulates the FBR to biomaterials by regulating
macrophage activation and fibrogenesis in a manner dependent on implant-induced change in tissue stiffness. We
will test our hypothesis through molecular gain- or loss-of-function studies. We expect that the results of this study
may provide invaluable information and insight regarding the molecular mechanisms mediating the FBR to
biomaterials, which may lead to the development of a novel and effective microRNA-based therapeutic strategy for
the amelioration of the poorly understood FBR to biomaterials.
项目概要
生物材料和设备的植入通常会导致异物反应(FBR)的发生,这是一种慢性反应
最终可能导致植入失败的炎症状况,从而可能导致患者受伤或死亡。
FBR 背后的分子机制仍然知之甚少。加深对分子的理解
FBR产生的机制是开发新颖有效的药物的最重要的一步
消除或减少 FBR 的治疗策略。巨噬细胞对于细胞的发育和进展至关重要
FBR。它们参与炎症蛋白的表达、破坏性异物巨体的形成
细胞(FBGC)、细胞外基质的重塑和植入物的封装。新兴数据支持
机械信号(例如基质刚度)在巨噬细胞激活中发挥关键作用。微小RNA (miR) 是
内源性小非编码 RNA 已成为众多基因表达的强大调节因子
细胞过程,包括巨噬细胞激活、细胞融合、炎症和纤维化。具体功能
miR 对 FBR 对生物材料的调节尚不确定;具体来说,矩阵是否存在仍然是一个悬而未决的问题
刚度调节 miR 表达以驱动 FBR。这些差距对 FBR 领域的进展构成了重大障碍。
最近,令人兴奋的初步数据表明,miR-146a 可能是 FBR 的负调节因子
生物材料。具体来说,我们发现:1)植入物粘附组织中 miR-146a 表达水平下降
皮下 (s.c) 植入模型,与巨噬细胞积累增加相关,FBGC
胶原蛋白的形成和积累; 2) 小鼠中 miR-146a 缺失加剧了皮下 FBR 过程
植入模型; 3) 体内巨噬细胞在组织-植入物界面积聚的严重程度为
取决于植入物的刚度; 4) miR-146a 的基因消融增强了巨噬细胞粘附和
在坚硬基质上扩散、FBGC 形成和巨噬细胞炎症,以及 5) TRPV4(一种
瞬时受体电位香草酸家族中的离子通道,抑制种植体粘附组织的发育
由原子力显微镜测定的 FBR 下的刚度。进一步的初步数据表明存在关联
FBR 条件下基质硬度、miR-146a 活性和 TRPV4 之间的关系。该提案的目的是
定义 miR-146a 在 FBR 中的作用,并阐明潜在的分子机制。基于我们的
根据初步数据,我们的中心假设是 miR-146a 通过调节 FBR 来调节生物材料
巨噬细胞的激活和纤维形成的方式依赖于植入物引起的组织硬度的变化。我们
将通过分子功能获得或丧失的研究来检验我们的假设。我们期望这项研究的结果
可能会提供有关介导 FBR 的分子机制的宝贵信息和见解
生物材料,这可能会导致开发一种新颖且有效的基于 microRNA 的治疗策略
对生物材料知之甚少的 FBR 的改进。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Role of TRPV4 in matrix stiffness-induced expression of EMT-specific LncRNA.
TRPV4 在基质硬度诱导的 EMT 特异性 LncRNA 表达中的作用。
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:4.3
- 作者:Sharma, Shweta;Ma, Li;Rahaman, Shaik O
- 通讯作者:Rahaman, Shaik O
Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation.
通过 TRPV4-Rac1 信号轴的机械转导在多核巨细胞的形成中发挥作用。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Arya, Rakesh K;Goswami, Rishov;Rahaman, Shaik O
- 通讯作者:Rahaman, Shaik O
Role of macrophage TRPV4 in inflammation.
巨噬细胞 TRPV4 在炎症中的作用。
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Dutta, Bidisha;Arya, Rakesh K;Goswami, Rishov;Alharbi, Mazen O;Sharma, Shweta;Rahaman, Shaik O
- 通讯作者:Rahaman, Shaik O
Mechanosensing and Mechanosignal Transduction in Atherosclerosis.
动脉粥样硬化中的机械传感和机械信号转导。
- DOI:
- 发表时间:2023-10
- 期刊:
- 影响因子:5.8
- 作者:Rahaman, Suneha G;Mahanty, Manisha;Mukherjee, Pritha;Dutta, Bidisha;Rahaman, Shaik O
- 通讯作者:Rahaman, Shaik O
TRPV4 regulates matrix stiffness and TGFβ1-induced epithelial-mesenchymal transition.
TRPV4 调节基质刚度和TGFβ1 诱导的上皮间质转化。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:5.3
- 作者:Sharma, Shweta;Goswami, Rishov;Zhang, David X;Rahaman, Shaik O
- 通讯作者:Rahaman, Shaik O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoming He其他文献
Xiaoming He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoming He', 18)}}的其他基金
Multiscale hydrogel biomaterials-enabled 3D modeling of cancer drug resistance
基于多尺度水凝胶生物材料的癌症耐药性 3D 建模
- 批准号:
10639167 - 财政年份:2023
- 资助金额:
$ 71.78万 - 项目类别:
Nanotechnology for targeted therapy and fundamental understanding oftherapeutic resistance in triple negative breast cancer
用于靶向治疗的纳米技术和对三阴性乳腺癌治疗耐药性的基本了解
- 批准号:
10376777 - 财政年份:2020
- 资助金额:
$ 71.78万 - 项目类别:
Nanotechnology for targeted therapy and fundamental understanding oftherapeutic resistance in triple negative breast cancer
用于靶向治疗的纳米技术和对三阴性乳腺癌治疗耐药性的基本了解
- 批准号:
10593921 - 财政年份:2020
- 资助金额:
$ 71.78万 - 项目类别:
Nanotechnology for targeted therapy and fundamental understanding oftherapeutic resistance in triple negative breast cancer
用于靶向治疗的纳米技术和对三阴性乳腺癌治疗耐药性的基本了解
- 批准号:
10593921 - 财政年份:2020
- 资助金额:
$ 71.78万 - 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
- 批准号:
10063652 - 财政年份:2018
- 资助金额:
$ 71.78万 - 项目类别:
Investigate the mechanisms underlying microRNA-146a activity in regulation of foreign body response to biomaterials
研究 microRNA-146a 活性调节生物材料异物反应的机制
- 批准号:
10522163 - 财政年份:2017
- 资助金额:
$ 71.78万 - 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
- 批准号:
9307738 - 财政年份:2016
- 资助金额:
$ 71.78万 - 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
- 批准号:
9193391 - 财政年份:2016
- 资助金额:
$ 71.78万 - 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
- 批准号:
8600270 - 财政年份:2011
- 资助金额:
$ 71.78万 - 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
- 批准号:
8600270 - 财政年份:2011
- 资助金额:
$ 71.78万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 71.78万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 71.78万 - 项目类别:
THE ROLE OF MESENCHYMAL PROGENITOR CELLS IN ABNORMAL UTERINE REPAIR
间充质祖细胞在异常子宫修复中的作用
- 批准号:
10660189 - 财政年份:2023
- 资助金额:
$ 71.78万 - 项目类别:
Analyzing the role of cAMP and STAT3 signaling in cartilage homeostasis and osteoarthritis development
分析 cAMP 和 STAT3 信号在软骨稳态和骨关节炎发展中的作用
- 批准号:
10822167 - 财政年份:2023
- 资助金额:
$ 71.78万 - 项目类别:
Mechanotransduction via LIM Domain Protein Mechanosensing
通过 LIM 结构域蛋白机械传感进行机械转导
- 批准号:
10735689 - 财政年份:2023
- 资助金额:
$ 71.78万 - 项目类别: