Development of therapeutic antibodies to target sodium channels involved in pain signaling
开发针对参与疼痛信号传导的钠通道的治疗性抗体
基本信息
- 批准号:10453929
- 负责人:
- 金额:$ 158.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAfferent NeuronsAntibodiesAntigen TargetingAntigensApplications GrantsBindingBiological ProductsBiological Response Modifier TherapyBiologyBiometryC FiberChemotherapy-induced peripheral neuropathyCircular DichroismClinicalComputer softwareDataDevelopmentElectrophysiology (science)ElementsEpitopesEscherichia coliEvaluationFDA approvedFeedbackGenerationsGenetic studyGoalsGrantHumanHuman GeneticsImmunizeImmunoglobulin GInterdisciplinary StudyIntrathecal InjectionsIon ChannelKineticsLlamaManualsMediator of activation proteinModelingMolecular ConformationMolecular ProbesMolecular TargetMonoclonal AntibodiesMusNeurosciencesNociceptorsPainPain managementPeptidesPharmacologyPhasePositioning AttributePre-Clinical ModelProceduresPropertyProtein EngineeringProtein FragmentProteinsRattusRecombinant AntibodyRecombinantsResearchSamplingSodiumSodium ChannelStructureTechnologyTherapeuticTherapeutic antibodiesValidationVertebral columnbasechronic pain managementdesignextracellularflexibilityimmunogenicityin vivomimeticsnanobodiesnovelnovel strategiesnovel therapeuticspain modelpain signalpre-clinicalprogramsprotein foldingrational designscreeningstructural biologysuccesstargeted treatmenttherapeutic candidatetherapeutic developmenttrendvoltage
项目摘要
Our overarching goal is to develop conformationally-specific recombinant monoclonal antibodies (R-mAb)
including Immunoglobulin G (IgG), single chain variable fragments (scFv) and nanobody (nAb) formats as a
novel class of biologics to target voltage-gated sodium (Nav) channels involved in pain signaling. Recent
breakthroughs in the structural biology of ion channels and Rosetta computational approaches for enhanced
design and refinement of antigens, antibodies (Abs) and stable peptides have set the stage for applying rational
design approaches to create conformationally-selective antibodies as superior therapeutic candidates to treat
chronic pain. Advances recombinant Ab technology allows for the generation of a broader set of candidate
therapeutics in different formats, yet with complementary attributes, that when used in conjunction further
increases the likeliehood of success. To pursue the goals of this project we will assemble a diverse and
interdisciplinary research team that will include experts in pain biology, development of therapeutics,
development of Abs in R-mAb, scFv and nAb formats, computational protein design, neuroscience,
electrophysiology, pharmacology, biostatistics, and preclinical models of pain. This project will establish our
expert research team and generate preliminary data that would support rationale, feasibility, and validity of our
rational design approach for a subsequent Team Research U19 grant application (RFA-NS-21-015). Human
genetic studies have identified the Nav1.7, Nav1.8, and Nav1.9 channel subtypes as critical mediators of action
potential generation in C-fiber nociceptors, and established these channels as molecular targets for pain therapy.
There is a growing trend toward targeting ion channels with biologics, and we will use this approach to identify
novel biological therapeutics for the treatment of pain. In particular, mAbs have emerged as prominent
therapeutics due to their low immunogenicity, high selectivity, and favorable half-lives, and there are currently
>130 different FDA approved mAbs in various formats in clinical use. Following initial studies with polyclonal Abs
that demonstrated the technical feasibility, multiple preclinical programs are now using the full spectrum of
available technologies to generate diverse forms of Abs against extracellular loops of ion channels. An
immunogen design approach, using the Rosetta modelling software, has been recently developed to stabilize
protein structural motifs as effective antigens to generate Abs targeting precisely defined epitopes. Our research
team will be in a unique position to use our novel structure-based approach and apply our interdisciplinary
expertise to develop conformationally-specific mAbs. We propose to design small proteins presenting epitope
mimetics from human Nav1.7, Nav1.8, and Nav1.9 channels followed by generation and characterization of
mAbs in IgG, scFv and nAb formats against the stabilized epitopes to develop therapeutic antibodies to treat
chronic pain.
我们的首要目标是开发构象特异性重组单克隆抗体 (R-mAb)
包括免疫球蛋白 G (IgG)、单链可变片段 (scFv) 和纳米抗体 (nAb) 格式
新型生物制剂,针对参与疼痛信号传导的电压门控钠 (Nav) 通道。最近的
离子通道结构生物学的突破和 Rosetta 计算方法增强
抗原、抗体 (Ab) 和稳定肽的设计和完善为合理应用奠定了基础
设计方法来创建构象选择性抗体作为治疗的优质候选药物
慢性疼痛。先进的重组抗体技术可以产生更广泛的候选抗体
不同形式的疗法,但具有互补的属性,当结合使用时,可以进一步
增加成功的可能性。为了实现该项目的目标,我们将组建多元化和
跨学科研究团队将包括疼痛生物学、治疗学开发、
R-mAb、scFv 和 nAb 格式的抗体开发、计算蛋白质设计、神经科学、
电生理学、药理学、生物统计学和疼痛的临床前模型。该项目将建立我们的
专家研究团队并生成初步数据,以支持我们的基本原理、可行性和有效性
后续 Team Research U19 拨款申请 (RFA-NS-21-015) 的合理设计方法。人类
遗传学研究已确定 Nav1.7、Nav1.8 和 Nav1.9 通道亚型是作用的关键介质
C 纤维伤害感受器的潜在产生,并将这些通道确立为疼痛治疗的分子靶点。
用生物制剂靶向离子通道的趋势日益增长,我们将使用这种方法来识别
用于治疗疼痛的新型生物疗法。特别是,单克隆抗体已成为突出的
因其低免疫原性、高选择性和良好的半衰期而成为治疗药物,目前有
> 130 种 FDA 批准的不同形式的单克隆抗体可用于临床使用。多克隆抗体初步研究之后
证明了技术可行性,多个临床前项目现在正在使用全谱
现有技术可产生针对离子通道细胞外环的多种形式的抗体。一个
最近开发了使用 Rosetta 建模软件的免疫原设计方法来稳定
蛋白质结构基序作为有效抗原,产生针对精确定义的表位的抗体。我们的研究
团队将处于独特的地位,可以使用我们新颖的基于结构的方法并应用我们的跨学科
开发构象特异性单克隆抗体的专业知识。我们建议设计呈递表位的小蛋白质
来自人类 Nav1.7、Nav1.8 和 Nav1.9 通道的模拟物,然后生成和表征
针对稳定表位的 IgG、scFv 和 nAb 形式的 mAb,可开发治疗性抗体来治疗
慢性疼痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HEIKE WULFF其他文献
HEIKE WULFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HEIKE WULFF', 18)}}的其他基金
KCa2 Channel Activators for Opioid Use Disorder
用于治疗阿片类药物使用障碍的 KCa2 通道激活剂
- 批准号:
10511349 - 财政年份:2022
- 资助金额:
$ 158.7万 - 项目类别:
Core A: Analytical and Medicinal Chemistry Core
核心 A:分析和药物化学核心
- 批准号:
10684074 - 财政年份:2022
- 资助金额:
$ 158.7万 - 项目类别:
Structure Assisted Design of SK Channel Selective Activators
SK通道选择性激活剂的结构辅助设计
- 批准号:
9329914 - 财政年份:2017
- 资助金额:
$ 158.7万 - 项目类别:
Probe and Pharmaceutical Optimization Core (PPOC)
探针和药物优化核心 (PPOC)
- 批准号:
10204121 - 财政年份:2012
- 资助金额:
$ 158.7万 - 项目类别:
Optimization of KCa2 Channel Activators as Neuroscience Tools and Potential Drugs
KCa2 通道激活剂作为神经科学工具和潜在药物的优化
- 批准号:
8305482 - 财政年份:2011
- 资助金额:
$ 158.7万 - 项目类别:
Optimization of KCa2 Channel Activators as Neuroscience Tools and Potential Drugs
KCa2 通道激活剂作为神经科学工具和潜在药物的优化
- 批准号:
8191433 - 财政年份:2011
- 资助金额:
$ 158.7万 - 项目类别:
Alkoxypsoralens, Small Molecule Blockers of the Voltage-Gated Kv1.3 Channel
烷氧基补骨脂素,电压门控 Kv1.3 通道的小分子阻断剂
- 批准号:
7935079 - 财政年份:2009
- 资助金额:
$ 158.7万 - 项目类别:
Small Molecule Kv1.3 Blockers as New Therapeutics for Multiple Sclerosis
小分子 Kv1.3 阻滞剂作为多发性硬化症的新疗法
- 批准号:
7014330 - 财政年份:2006
- 资助金额:
$ 158.7万 - 项目类别:
Alkoxypsoralens, Small Molecule Blockers of the Voltage-Gated Kv1.3 Channel
烷氧基补骨脂素,电压门控 Kv1.3 通道的小分子阻断剂
- 批准号:
7141943 - 财政年份:2006
- 资助金额:
$ 158.7万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
- 批准号:
10735377 - 财政年份:2023
- 资助金额:
$ 158.7万 - 项目类别:
Investigating the contributions of voltage gated sodium channels to oxaliplatin induced neuropathy
研究电压门控钠通道对奥沙利铂诱导的神经病变的影响
- 批准号:
10621059 - 财政年份:2022
- 资助金额:
$ 158.7万 - 项目类别:
Development of a non-opioid chemogenetic therapy for chronic neuropathic pain
开发治疗慢性神经病理性疼痛的非阿片类化学遗传学疗法
- 批准号:
10266854 - 财政年份:2020
- 资助金额:
$ 158.7万 - 项目类别:
Identification of enteric nerve circuits controlling gut motility
控制肠道运动的肠神经回路的识别
- 批准号:
10441371 - 财政年份:2019
- 资助金额:
$ 158.7万 - 项目类别:
Identification of enteric nerve circuits controlling gut motility
控制肠道运动的肠神经回路的识别
- 批准号:
10019526 - 财政年份:2019
- 资助金额:
$ 158.7万 - 项目类别: