Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
基本信息
- 批准号:10340724
- 负责人:
- 金额:$ 37.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAdaptor Signaling ProteinAddressAfferent NeuronsAlzheimer&aposs DiseaseApoptoticAxonBindingBiogenesisBiologicalBiological AssayBiologyBiosensorCalciumCardiolipinsCell Culture TechniquesCell physiologyCellsCellular biologyDataDefectDiseaseDynein ATPaseEndoplasmic ReticulumEukaryotic CellGeneticGenetic ScreeningGoalsHealthHomeostasisHourHumanImageIn VitroIndividualIronKnowledgeLabelLifeLinkLipid BindingLipidsMaintenanceMediatingMetabolicMitochondriaMolecularMotorMutateNeurodegenerative DisordersNeuronsOrganellesOrganismOuter Mitochondrial MembranePathologyPathway interactionsPatientsPopulationPositioning AttributeProcessProductionProteinsProteomeProtocols documentationRecyclingRegulationRoleSignal TransductionSignaling MoleculeSiteSourceSystemTestingTherapeuticTherapeutic InterventionTransgenic OrganismsWorkZebrafishagedanterograde transportbasedesignexperimental studyfascinateimaging approachin vivoin vivo imaginginduced pluripotent stem cellinsightmetermutantneural circuitneuroimagingneuronal cell bodyneuronal survivalretrograde transporttooltranscriptome
项目摘要
Project Summary
Mitochondria are essential for cellular function and organism viability. These organelles are well known for their
production of ATP, the primary energy currency of most eukaryotic cells. Less well known are the plethora of
other functions these organelles have including production of signaling molecules, regulation of apoptotic
signaling cascades, serving as a calcium sink, and also being the primary storage and utilization site of iron in
the cell. To serve these diverse functions, mitochondria must be properly localized in all cells; however, this
organelle is particularly critical in neurons. Neurons are highly metabolically active, electrically polarized, and
can have an enormous volume making regulation of the mitochondrial population particularly challenging.
Likely due to the high metabolic demands of this cell, precise control of mitochondrial localization and
maintenance of mitochondrial health are essential for neuronal survival. Abnormal mitochondrial localization,
health, and function have been linked to many neurodegenerative diseases including Alzheimer’s disease. In
Alzheimer’s, defects in mitochondrial calcium load and contacts with the endoplasmic reticulum have both
been noted. Additionally, advanced neuroimaging of early-stage patients revealed defects in mitochondrial
function, making understanding how mitochondrial function is maintained in neurons paramount to
understanding disease biology. While the last several decades have revealed fascinating insights into
mitochondrial biology in neurons, we still do not have a thorough understanding of how the population of
mitochondria is maintained over the long life of the neuron. Anterograde transport is critical for bringing healthy
organelles from the cell body into the long axonal process which can extend a meter from the cell body in
humans. Conversely, retrograde transport moves aged or damaged organelles towards to cell body. Once
damaged organelles reach the cell body, some undergo targeted degradation. The fate of the bulk of these
organelles and the source of healthy mitochondria has not been defined. We have developed an in vivo system
to address these long-standing questions in the field. Using zebrafish neurons, we can image mitochondrial
localization, health, and transport in vivo in a fully intact neural circuit. We have developed transgenic lines,
genetic tools, and imaging approaches to individually label mitochondria to track them and follow their lifetime
and biogenesis in neurons. This will allow us to determine the source of healthy mitochondria necessary for
maintenance of the population in neurons (Aim 1). Independently, we designed a strategy to define the
mechanism of motor-mitochondria attachment specifically necessary for retrograde transport of the organelle
(Aim 2). Together, the proposed experiments will provide mechanistic insight into how and why mitochondria
move in the retrograde direction while also defining the source of healthy organelles necessary for
maintenance of the mitochondrial population in neurons. The knowledge gained will enhance our insight into
the basic biology of the cell that can be repurposed for potential therapeutic interventions.
项目概要
线粒体对于细胞功能和生物体活力至关重要。这些细胞器以其自身的功能而闻名。
ATP 的产生是大多数真核细胞的主要能量货币,但较少为人所知。
这些细胞器具有的其他功能包括产生信号分子、调节细胞凋亡
信号级联,作为钙汇,也是铁的主要储存和利用场所
为了发挥这些不同的功能,线粒体必须正确定位在所有细胞中。
细胞器对于神经元来说尤其重要,神经元具有高度代谢活性、电极化和
可能具有巨大的体积,使得线粒体群体的调节特别具有挑战性。
可能是由于该细胞的高代谢需求,线粒体定位的精确控制和
维持线粒体健康对于神经元存活至关重要。
健康和功能与许多神经退行性疾病有关,包括阿尔茨海默病。
阿尔茨海默病、线粒体钙负荷缺陷以及与内质网的接触都具有
此外,早期患者的先进神经影像显示线粒体缺陷。
功能,使得了解神经元中线粒体功能如何维持至关重要
了解疾病生物学在过去的几十年里已经揭示了令人着迷的见解。
神经元中的线粒体生物学,我们仍然没有彻底了解神经元群体如何
线粒体在神经元的漫长寿命中得到维持,对于保持健康至关重要。
细胞器从细胞体进入长轴突,轴突可以从细胞体延伸一米
人类离线时,逆行运输将老化或受损的细胞器移向细胞体。
受损的细胞器到达细胞体,其中一些会经历定向降解。
细胞器和健康线粒体的来源尚未确定。我们开发了一种体内系统。
为了解决该领域长期存在的问题,我们可以使用斑马鱼神经元对线粒体进行成像。
我们开发了转基因品系,在完整的神经回路中进行体内定位、健康和运输。
遗传工具和成像方法可单独标记线粒体以跟踪它们并追踪它们的寿命
以及神经元中的生物发生,这将使我们能够确定健康线粒体的来源。
独立地,我们设计了一种策略来定义神经元数量。
运动线粒体附着机制对于细胞器的逆行运输特别必需
(目标 2)。所提出的实验将提供关于线粒体如何以及为何发生的机制见解。
朝着逆行方向移动,同时也确定了健康细胞器所需的来源
所获得的知识将增强我们对神经元线粒体群的维持的认识。
细胞的基本生物学可以重新用于潜在的治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine M Drerup其他文献
Catherine M Drerup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine M Drerup', 18)}}的其他基金
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10570955 - 财政年份:2022
- 资助金额:
$ 37.54万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8862557 - 财政年份:2014
- 资助金额:
$ 37.54万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8790875 - 财政年份:2014
- 资助金额:
$ 37.54万 - 项目类别:
In vivo analysis of the mechanisms of axon transport.
轴突运输机制的体内分析。
- 批准号:
8125867 - 财政年份:2011
- 资助金额:
$ 37.54万 - 项目类别:
相似国自然基金
ARRB调控Wnt/β-catenin信号通路诱导血管内皮细胞necroptosis在非小细胞肺癌外渗与转移中的作用及机制研究
- 批准号:81902350
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
内化接头蛋白HIP1R介导神经元树突生长和分支的作用及其机制研究
- 批准号:31871418
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
SH3结构域蛋白Dlish调控果蝇Hippo信号通路的分子机制研究
- 批准号:31801190
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
锚定蛋白ENH调控eNOS磷酸化在血管重构中的作用及机制研究
- 批准号:31871399
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
PKA-LNK-14-3-3信号通路在造血干细胞及其前体细胞中的功能研究
- 批准号:31701236
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10570955 - 财政年份:2022
- 资助金额:
$ 37.54万 - 项目类别:
Cargo Transport by Myosin Va and Kinesin-1 Molecular Motors: In Vitro Model Systems that Build Complexity in 3-Dimensions.
Myosin Va 和 Kinesin-1 分子马达的货物运输:构建 3 维复杂性的体外模型系统。
- 批准号:
10204620 - 财政年份:2021
- 资助金额:
$ 37.54万 - 项目类别:
Cargo Transport by Myosin Va and Kinesin-1 Molecular Motors: In Vitro Model Systems that Build Complexity in 3-Dimensions.
Myosin Va 和 Kinesin-1 分子马达的货物运输:构建 3 维复杂性的体外模型系统。
- 批准号:
10393000 - 财政年份:2021
- 资助金额:
$ 37.54万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8862557 - 财政年份:2014
- 资助金额:
$ 37.54万 - 项目类别:
Identifying modulators of dynein-based cargo motility
识别基于动力蛋白的货物运动调节剂
- 批准号:
8790875 - 财政年份:2014
- 资助金额:
$ 37.54万 - 项目类别: