A self-capacitance driven wearable electromyometrial imaging system for maternal and fetal monitoring during pregnancy and labor
一种自电容驱动的可穿戴式肌电成像系统,用于妊娠和分娩期间的母婴监测
基本信息
- 批准号:10445605
- 负责人:
- 金额:$ 33.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAddressAdoptionAreaBenchmarkingBirthBody SurfaceBody of uterusBrainCerebral PalsyChildClinicalClinical ResearchClinical TreatmentDataDelivery RoomsElectric CapacitanceElectrodesEngineeringFetal MonitoringFetal Mortality StatisticsGeometryGoldHealthHeartHeart failureHomeHumanImageImaging technologyImpaired cognitionJointsKnowledgeLongitudinal cohortMagnetic Resonance ImagingMapsMeasurementMeasuresMedical centerMental RetardationMethodsMonitorMorphologic artifactsMotionOrganOutcomeOutpatientsPathologicPatientsPatternPerformancePerinatologyPersonsPregnancyPregnant WomenPremature BirthPremature LaborPrintingResearchResearch ActivityResolutionRiskScheduleSignal TransductionSiteStretchingSurfaceSystemTechnologyTelemetryTransducersTranslatingUnited StatesUniversitiesUterine ContractionUterine MonitoringUterusValidationVisual impairmentWashingtonbaseclinical applicationclinical translationcostdensitydesigneffectiveness evaluationelectrical propertyhearing impairmenthuman subjectimaging platformimaging studyimaging systemimprovedinstrumentinstrumentationmechanical propertiesmembernew technologynovelpatient mobilityportabilitypreventsensortemporal measurementtooltreatment strategywireless
项目摘要
PROJECT SUMMARY
Approximately 10% of pregnant women give birth preterm In the United States and worldwide, which not only
results in a high rate of fetal mortality but also puts the children at a lifelong risk of negative health consequences
such as cerebral palsy, mental retardation, and visual and hearing impairments. Despite years of research, the
mechanisms of initiation and propagation of uterine contractions resulting in preterm labor and birth remain
unknown. In large part, this is because of our limited ability to monitor the human uterine contractions with
sufficient spatial and temporal resolutions. This leads to a lack of critical knowledge of the pathologic factors that
alter the normal uterine maturation, initiate preterm labor, and result in preterm birth. In order to address this
unmet clinical and research need, our team has recently developed a novel high-resolution and noninvasive
electromyometrial imaging (EMMI) system, which uses up to 256 unipolar electrodes to measure uterine
electrograms from the patient's abdomen surface and then combines the patient-specific body-uterus geometry
obtained by magnetic resonance imaging (MRI) to generate accurate and robust three-dimensional maps of
uterine electrical activity during contractions. Because such a powerful experimental tool could permit closer and
more precise study of birth-related risks and improve maternal and child outcomes, we believe there could be a
significant clinical impact for us to develop a low-cost, wireless, and wearable version in order to make this
imaging technology more accessible for outpatient or in-home monitoring settings.
We propose to develop and validate the functionality of a unique wearable EMMI system with printed
disposable electrodes, wireless power delivery, and telemetry for continuously monitoring of the uterine
contraction activities in ambulatory patients. The proposed research activity will involve developing of ultrathin
soft sensor patches with printed stretchable electrodes for recording high quality electrograms from the patient’s
abdomen and generating accurate and robust 3D maps of the uterine surface; investigating and designing a
novel self-capacitance based wireless power transfer instrumentation for wirelessly powering all the sensing and
telemetry circuits at each recording site in a fully distributed high-density imaging system; validating the wireless
and wearable EMMI system in human subjects and benchmarking its performance against “gold standard” wired
EMMI system. Upon successful completion of this study, the entirely new wearable, wireless, and batteryless
imaging system developed in the project will facilitate EMMI's clinical translations, allow it to be used outside the
delivery room for outpatient setting or in-home monitoring applications, and ultimately enable us to leverage the
electrical mapping data for evaluating uterine electrical maturation and contraction patterns during pregnancy
and labor and use the results to better understand and treat preterm birth.
项目概要
在美国和世界范围内,大约 10% 的孕妇早产,这不仅
导致胎儿死亡率很高,但也使儿童终生面临负面健康后果的风险
尽管经过多年的研究,仍发现脑瘫、智力低下、视力和听力障碍等。
导致早产和分娩的子宫收缩启动和传播的机制仍然存在
很大程度上,这是因为我们监测人类子宫收缩的能力有限。
足够的空间和时间分辨率导致缺乏对病理因素的批判性认识。
改变正常的子宫成熟度,引发早产,并导致早产。
未满足的临床和研究需求,我们的团队最近开发了一种新型的高分辨率和非侵入性
肌电成像 (EMMI) 系统,使用多达 256 个单极电极来测量子宫
来自患者腹部表面的电图,然后结合患者特定的身体子宫几何形状
通过磁共振成像 (MRI) 获得,以生成准确且稳健的三维图
因为这样一个强大的实验工具可以让我们更接近和更接近宫缩期间的子宫电活动。
更精确地研究出生相关风险并改善孕产妇和儿童结局,我们相信可能会出现
对我们开发低成本、无线和可穿戴版本的重大临床影响,以便使这一
成像技术更适合门诊或家庭监测环境。
我们建议开发并验证独特的可穿戴 EMMI 系统的功能,该系统带有印刷
一次性电极、无线供电和遥测技术,用于连续监测子宫
拟议的研究活动将涉及超薄患者的收缩活动。
带有印刷可拉伸电极的软传感器贴片,用于记录患者的高质量电图
腹部并生成准确且可靠的子宫表面 3D 地图;
新颖的基于自电容的无线功率传输仪器,用于为所有传感和
完全分布式高密度成像系统中每个记录站点的遥测电路验证无线;
和可穿戴 EMMI 系统在人类受试者中的应用,并根据“黄金标准”有线对其性能进行基准测试
EMMI 系统成功完成这项研究后,推出了全新的可穿戴、无线、无电池系统。
该项目开发的成像系统将促进 EMMI 的临床转化,使其能够在体外使用
用于门诊环境或家庭监控应用的产房,最终使我们能够利用
用于评估怀孕期间子宫电成熟和收缩模式的电测绘数据
和分娩并利用结果更好地了解和治疗早产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chuan Wang其他文献
Chuan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chuan Wang', 18)}}的其他基金
A self-capacitance driven wearable electromyometrial imaging system for maternal and fetal monitoring during pregnancy and labor
一种自电容驱动的可穿戴式肌电成像系统,用于妊娠和分娩期间的母婴监测
- 批准号:
10666402 - 财政年份:2022
- 资助金额:
$ 33.86万 - 项目类别:
相似国自然基金
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具有主动摆动腹部的仿蝴蝶扑翼大机动飞行机理及样机关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 33.86万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 33.86万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 33.86万 - 项目类别:
Targeting Fluid Stress-induced Chemoresistance in a 3D Carcinomatosis Perfusion Model Using Mechanism-based Photo-immunoconjugate Nanoparticles
使用基于机制的光免疫缀合物纳米颗粒在 3D 癌病灌注模型中靶向流体应激诱导的化疗耐药性
- 批准号:
10587481 - 财政年份:2023
- 资助金额:
$ 33.86万 - 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 33.86万 - 项目类别: