DDI-on-a-chip: an optimized liver microphysiological system and microenvironment for complex drug-drug interaction studies
DDI-on-a-chip:用于复杂药物相互作用研究的优化肝脏微生理系统和微环境
基本信息
- 批准号:10324897
- 负责人:
- 金额:$ 25.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2023-03-20
- 项目状态:已结题
- 来源:
- 关键词:AdsorptionAffectBiological AssayCell Culture TechniquesCellsChemicalsClinicalComplexDataDecision MakingDevelopmentDrug CostsDrug ExposureDrug InteractionsDrug KineticsDrug ModelingsDrug toxicityElderlyEngineeringEnzyme InhibitionEnzymesEvaluationEventFee-for-Service PlansGene ExpressionGrowth FactorGuidelinesHealthHealthcareHepaticHepatocyteHospitalizationHumanIn VitroLeadLiverMetabolismModelingMorbidity - disease rateNutrientPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhasePhenotypePhysiologicalPhysiologyPolypharmacyPopulationPre-Clinical ModelPreclinical Drug DevelopmentPredictive ValuePrevalenceProcessPropertyRecommendationReproducibilityRiskSafetySignal TransductionSmall Business Innovation Research GrantSomatotropinSystemTechnologyTimeToxic effectTreatment EfficacyUnited StatesWithdrawaladverse drug reactionbaseclinical effectclinical predictorsclinically relevantcostcost effectivecost estimatedesigndrug developmentdrug metabolismexperimental studyfetalfirst-in-humanimprovedinterestmicrophysiology systemnovelnovel therapeuticsperpetratorspharmacokinetic modelpolycarbonatepre-clinicalpreventscreeningtranscription factor
项目摘要
Project Summary
Drug-drug interactions (DDIs), caused by the administration of multiple drugs simultaneously (i.e
polypharmacy), can lead to adverse drug reactions (ADRs). The prevalence of polypharmacy-related DDIs
among older adults is ~80%. DDI-related ADRs can cause profound clinical effects, either by reducing
therapeutic efficacy or increasing the toxicity of drugs. In the United States (US), ADRs are common, causing
1.1% of annual hospital admissions, and expensive with associated annual costs estimated between 30-180
billion dollars. Moreover, approximately 50% of the drugs withdrawn for safety reasons from the US market
between 1999 and 2003 were associated with DDIs. This is especially relevant for complex DDIs which include
metabolism-transporter interplay, time-dependent and mixed inhibition/induction of drug-metabolizing enzymes
(DMEs) and transporters, and metabolite-based inhibition/induction. As DDIs cannot be prevented without
comprehensive drug pharmacokinetic (PK) data to guide medication adjustments according to DDI risks, there
is a need for carefully planned preclinical and clinical DDI studies during drug development. However, current in
vitro preclinical liver PK models, including microphysiological systems (MPSs), suffer from important functional
limitations such as expression of a fetal phenotype, low expression levels of drug-metabolizing enzymes and
transporters, and rapid phenotypic dedifferentiation (i.e., short-term culture systems). This proposed technology
will be especially applicable for drugs with complex DDI liability including time-dependent induction of DMEs and
transporters.
Javelin’s overall strategy is to develop microphysiological systems (MPSs) optimized for drug metabolism
and pharmacokinetics (DMPK) studies including DDIs to be used in combination with our quantitative systems
pharmacology (QSP) models to generate more predictive preclinical drug data. This SBIR phase I project will
establish the optimal cellular and hepatotropic factor microenvironment to drive long-term, physiologically-
relevant expression, and activity of liver DMEs and transporters. The endogenous hepatotropic factors will be
selected for their ability to maintain liver cell health and drive the transcription factor signaling networks that
regulate DME and transporter gene expression. The hepatotropic factors will be screened using a high-
throughput fractional factorial analysis approach and optimized in Javelin’s polycarbonate (i.e., PDMS-free to
minimize nonspecific drug adsorption), millifluidic, recirculating MPS engineered for DMPK studies. The resulting
medium supplement, “DMPK-optimal” will be the first chemically-defined, xenoprotein-free supplement designed
to drive sustained DME and transporter gene expression and activity for DMPK-DDI studies. Javelin’s DMPK-
DDI platform will be provided as a low-cost, commercial-available product to pharmaceutical companies
interested in generating comprehensive, accurate, human-based PK data to better inform their drug development
process and design of first in-human (FIH) trials.
项目概要
药物间相互作用 (DDI),由同时服用多种药物引起(即:
多药治疗)可能导致药物不良反应(ADR) 与多药治疗相关的 DDI 的流行。
在老年人中,约 80% 的 DDI 相关 ADR 可以通过减少不良反应来引起深远的临床影响。
治疗效果或增加药物毒性在美国,ADR 很常见,导致。
占每年入院人数的 1.1%,且费用昂贵,相关年度费用估计在 30-180 之间
此外,大约 50% 的药物出于安全原因从美国市场撤回。
1999 年至 2003 年间的数据与 DDI 相关,这对于复杂的 DDI 尤为重要,其中包括。
代谢-转运蛋白相互作用、药物代谢酶的时间依赖性和混合抑制/诱导
(DME)和转运蛋白,以及基于代谢物的抑制/诱导,因为 DDI 是无法预防的。
全面的药物药代动力学 (PK) 数据可根据 DDI 风险指导药物调整,
然而,在药物开发过程中需要仔细计划临床前和临床 DDI 研究。
体外临床前肝脏 PK 模型,包括微生理系统 (MPS),受到重要功能的影响
限制,例如胎儿表型的表达、药物代谢酶的低表达水平和
转运蛋白和快速表型去分化(即短期培养系统)。
将特别适用于具有复杂 DDI 责任的药物,包括 DME 的时间依赖性诱导和
运输者。
Javelin 的总体战略是开发针对药物代谢优化的微生理系统 (MPS)
和药代动力学 (DMPK) 研究,包括与我们的定量系统结合使用的 DDI
该 SBIR 第一阶段项目将使用药理学 (QSP) 模型生成更具预测性的临床前药物数据。
建立最佳的细胞和促肝因子微环境,以驱动长期的、生理上的
肝脏 DME 和转运蛋白的相关表达和活性将是内源性促肝因子。
因其维持肝细胞健康和驱动转录因子信号网络的能力而被选中
调节 DME 和转运蛋白基因表达将使用高通量筛选。
吞吐量部分因子分析方法并在 Javelin 的聚碳酸酯(即不含 PDMS 的聚碳酸酯)中进行了优化
最大限度地减少非特异性药物吸附)、微流体、再循环 MPS,专为 DMPK 研究而设计。
培养基补充剂,“DMPK-optimal”将是第一个化学成分明确、不含异种蛋白的补充剂
驱动 DMPK-DDI 研究中持续的 DME 和转运蛋白基因表达和活性。
DDI平台将作为低成本、可商用的产品提供给制药公司
有兴趣生成全面、准确、基于人的 PK 数据,以更好地为他们的药物开发提供信息
首次人体 (FIH) 试验的流程和设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murat Cirit其他文献
Murat Cirit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murat Cirit', 18)}}的其他基金
Multi-Tissue MAFLD Chip for Mechanism-Based Drug Testing
用于基于机制的药物测试的多组织 MAFLD 芯片
- 批准号:
10484325 - 财政年份:2022
- 资助金额:
$ 25.96万 - 项目类别:
Translational Center of Tissue Chip Technologies for quantitative characterization of Microphysiological Systems
用于微生理系统定量表征的组织芯片技术转化中心
- 批准号:
9275102 - 财政年份:2016
- 资助金额:
$ 25.96万 - 项目类别:
相似国自然基金
基于新型微凝胶/金纳米粒复合生物压力探针的肿瘤压力检测和影响因素研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
用于快速检测的纸基材料对生物医学比色反应信号的影响机制
- 批准号:82072016
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
土壤胞外DNA的分离、检测及其对土壤微生物群落结构研究的影响
- 批准号:31971530
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
利用微波技术快速诊断金属污染物对微生物群落的影响
- 批准号:41603069
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
采用三维碳气凝胶微电极电化学生物传感器实时检测电刺激多巴胺能神经元对多巴胺分泌的影响
- 批准号:21505108
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
- 批准号:
10644574 - 财政年份:2023
- 资助金额:
$ 25.96万 - 项目类别:
Multiscale Effects of Aging on Elastic Arterial Tissue Mechanics
衰老对弹性动脉组织力学的多尺度影响
- 批准号:
10811244 - 财政年份:2023
- 资助金额:
$ 25.96万 - 项目类别:
Development of novel, targeted small molecule inhibitors of DNA repair in high unmet need tumors-TNBC
开发新型靶向小分子 DNA 修复抑制剂,用于高度未满足需求的肿瘤 - TNBC
- 批准号:
10480460 - 财政年份:2022
- 资助金额:
$ 25.96万 - 项目类别:
Development of DksA-targeted Antibiotics for Treatment of Gram-negative Infections
开发用于治疗革兰氏阴性菌感染的 DksA 靶向抗生素
- 批准号:
10487785 - 财政年份:2022
- 资助金额:
$ 25.96万 - 项目类别:
Defining the Role of DDX6 in Regulating FUS Condensates
定义 DDX6 在调节 FUS 冷凝物中的作用
- 批准号:
10677605 - 财政年份:2022
- 资助金额:
$ 25.96万 - 项目类别: