Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
基本信息
- 批准号:10311679
- 负责人:
- 金额:$ 35.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-04 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AIDS/HIV problemAcademic TrainingAddressApplications GrantsAreaArtificial IntelligenceBig DataBig Data to KnowledgeBiometryBusinessesCOVID-19Cessation of lifeClinicalClinical MedicineCommunicable DiseasesCommunitiesCompetenceDataData ScienceData ScientistData SourcesDevelopmentDisciplineDiseaseDisease ProgressionEducation ProjectsEducational CurriculumElectronic Health RecordEntrepreneurshipEnvironmentFaceFacultyFosteringFundingFunding AgencyGenerationsGenomicsGoalsHIVHealthHealth Care ResearchHealth PolicyHealth SciencesHealthcareIndividualIndustryInfectious Diseases ResearchInformation TechnologyInfrastructureKnowledgeMachine LearningManuscriptsMeasuresMedicineMentorsMethodologyMissionNational Institute of Allergy and Infectious DiseaseOutcomePharmacy facilityPublic HealthPublic Health NursingResearchResearch PersonnelResearch Project GrantsResearch ProposalsSchoolsScienceSocial WorkSouth CarolinaStrategic PlanningStructureSystemTalentsTechnologyTimeTrainingTraining ProgramsUnderrepresented PopulationsUnited States National Institutes of HealthUniversitiesVirusWagesWorkforce Developmentbig-data sciencebiomedical data sciencecareercohortcollegecommunity engagementcomorbiditydata acquisitiondata streamsdesigndigitalexperiencefinancial incentivegenomic datahands on researchhealth datahealth science researchhealth traininghigh riskimprovedinnovationinterestmedical schoolsmobile computingnanobiomaterialpeerpeer coachingpreventprofessorprogramspublic health interventionpublic health relevancerecruitskill acquisitionskillssocial mediasynergismtrendwearable device
项目摘要
Abstract
The multiple, massive, and rich Big Data streams in healthcare (e.g., electronic health records, mobile
technologies, wearable devices, genomic data) and the emergence of advanced information and computational
technologies (e.g., machine learning and artificial intelligence) offer an invaluable opportunity for applying
innovative Big Data science research in NIAID focus areas of infectious diseases such as HIV/AIDS and
COVID-19. Big Data science has the potential to identify high-risk individuals and communities and prioritize
them for early biomedical or public health interventions, predict long-term clinical outcomes and disease
progression, and evaluate public health policy impact. Key to addressing these complexities is a critical mass
of health researchers with adequate knowledge, competencies, and skills to unlock important answers from Big
Data to better understand, treat, and ultimately prevent these diseases and related comorbidities. However,
there is a nationwide shortage of talent with such knowledge, competencies, and skills, especially in traditional
academic settings. While junior faculty, as part of the generations of digital learners, have the greatest potential
to develop their Big Data health science research agenda, many face multiple structural barriers to conduct Big
Data science research. Such barriers include a lack of protected time to initiate new interdisciplinary Big Data
research, lack of opportunity to participate in funded Big Data research, and a lack of adequate mentoring. To
address these gaps, we propose developing a “Big Data Heath Science Fellow” program for early career junior
faculty (i.e., assistant professors) at health science schools (e.g., medicine, public health, nursing, pharmacy,
social work) at the University of South Carolina (USC). Specifically, we plan to recruit 4 USC health science
junior faculty per year and provide them with protected time (25%) to participate in the comprehensive training
program, including: 1) courses for competency and skill development in Big Data research and professional
development; 2) participation in hands-on research and grant proposal development; and 3) rich mentoring
experience in Big Data research and professional development. The proposed training program will be
implemented with the support of the existing infrastructure of the USC Big Data Health Science Center
(BDHSC), one of USC’s Excellence Initiatives. BDHSC’s mission is to promote and support Big Data health
science research at USC and across SC through capacity development, academic training, professional
development, community engagement, and methodological advancement. BDHSC contains 5 content cores
(electronic health records, geospatial, genomic, social media, and bio-nanomaterial data) and 2 supporting
hubs (business/entrepreneurship and technology) with the involvement of 43 faculty from 10 USC
college/schools. The proposed training will be an integral component of the BDHSC professional development
mission. Upon the accomplishment of the proposed training, each trainee will be expected to: 1) obtain hands-
on mentored research experience on an NIAID-funded project; 2) develop at least one Big Data-related
manuscript on HIV or COVID-19; and 3) submit one grant application to NIAID or other appropriate funding
source. The training program will foster a research environment to encourage individuals from diverse
backgrounds, including those from underrepresented groups, to pursue further Big Data health science
research in HIV, COVID-19, and other NIAID focus areas.
抽象的
医疗保健领域的多个、海量且丰富的大数据流(例如电子健康记录、移动
技术、可穿戴设备、基因组数据)以及先进信息和计算的出现
技术(例如机器学习和人工智能)为应用提供了宝贵的机会
NIAID 的创新大数据科学研究重点关注艾滋病毒/艾滋病等传染病领域
大数据科学有潜力识别高风险个人和社区并确定优先顺序。
它们用于早期生物医学或公共卫生干预,预测长期临床结果和疾病
解决这些复杂性的关键是临界质量
拥有足够知识、能力和技能的健康研究人员,可以从大数据中解开重要答案
数据可以更好地了解、治疗并最终预防这些疾病和相关合并症。
全国范围内缺乏具有此类知识、能力和技能的人才,特别是在传统领域
学术环境中,初级教师作为几代数字学习者的一部分,具有最大的潜力。
为了制定大数据健康科学研究议程,许多人面临着开展大数据的多重结构性障碍
这些障碍包括缺乏启动新的跨学科大数据的受保护时间。
研究、缺乏参与受资助的大数据研究的机会以及缺乏足够的指导。
为了解决这些差距,我们建议为早期职业青年开发“大数据健康科学研究员”计划
健康科学学校(例如医学、公共卫生、护理、药学、
具体来说,我们计划在南卡罗来纳大学 (USC) 招聘 4 名南加州大学健康科学专业的学生。
每年为初级教师提供受保障的时间(25%)参加综合培训
计划,包括:1)大数据研究和专业能力和技能发展课程
开发;2) 参与实践研究和资助提案的制定;以及 3) 丰富的指导;
拟议的培训计划将是大数据研究和专业发展的经验。
在南加州大学大数据健康科学中心现有基础设施的支持下实施
(BDHSC) 是南加州大学卓越计划之一,BDHSC 的使命是促进和支持大数据健康。
南加州大学和整个南加州大学通过能力发展、学术培训、专业
BDHSC 包含 5 个内容核心。
(电子健康记录、地理空间、基因组、社交媒体和生物纳米材料数据)和 2 个支持
中心(商业/创业和技术),有来自 10 USC 的 43 名教职人员参与
学院/学校所提议的培训将是 BDHSC 专业发展的一个组成部分。
完成拟议的培训后,每位学员将应: 1) 获得实际操作能力。
拥有 NIAID 资助项目的指导研究经验; 2) 开发至少一项与大数据相关的项目;
关于 HIV 或 COVID-19 的手稿;以及 3) 向 NIAID 或其他适当的资金提交一份资助申请
该培训计划将营造一个鼓励来自不同来源的个人的研究环境。
背景,包括来自代表性不足群体的背景,以进一步追求大数据健康科学
HIV、COVID-19 和其他 NIAID 重点领域的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoming Li其他文献
Xiaoming Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoming Li', 18)}}的其他基金
Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
- 批准号:
10554786 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
Visualizing and predicting new and late HIV diagnosis in South Carolina: A Big Data approach
可视化和预测南卡罗来纳州新的和晚期的艾滋病毒诊断:大数据方法
- 批准号:
10815140 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
University of South Carolina Big Data Health Science Conference
南卡罗来纳大学大数据健康科学会议
- 批准号:
10751656 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
- 批准号:
10481286 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
- 批准号:
10574753 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
- 批准号:
10696087 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
- 批准号:
10696087 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
- 批准号:
10665078 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Utilizing All of Us data to examine the impact of COVID-19 on mental health among people living with HIV
利用 All of Us 数据研究 COVID-19 对 HIV 感染者心理健康的影响
- 批准号:
10657875 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Multilevel Determinants of Racial and Ethnic Disparities in Maternal Morbidity and Mortality in the Context of COVID-19 Pandemic
COVID-19 大流行背景下孕产妇发病率和死亡率的种族和民族差异的多层次决定因素
- 批准号:
10392607 - 财政年份:2021
- 资助金额:
$ 35.1万 - 项目类别:
相似海外基金
Charles R. Drew University of Medicine and Science Research Endowment Program
查尔斯·R·德鲁医学与科学研究大学捐赠计划
- 批准号:
10765585 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
Vanderbilt-Nigeria Biostatistics Training Program (VN-BioStat)
范德比尔特-尼日利亚生物统计学培训计划(VN-BioStat)
- 批准号:
10470510 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Latino Scholars in HIV/AIDS Research Education (SHARE)
艾滋病毒/艾滋病研究教育中的拉丁裔学者(分享)
- 批准号:
10402082 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Meharry HIV/AIDS Research and Training Facility
梅哈里艾滋病毒/艾滋病研究和培训设施
- 批准号:
10547968 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
- 批准号:
10461949 - 财政年份:2021
- 资助金额:
$ 35.1万 - 项目类别: