Coupling between circadian rhythms and redox signaling in stem cell differentiation and adult neurogenesis
干细胞分化和成体神经发生中昼夜节律与氧化还原信号之间的耦合
基本信息
- 批准号:10299608
- 负责人:
- 金额:$ 7.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:ARNTL geneAcuteAdultAlzheimer&aposs DiseaseBehavioralBiological ModelsBiologyBromodeoxyuridineCRISPR/Cas technologyCell Differentiation processCell divisionCellsCircadian DysregulationCircadian RhythmsCircadian gene expressionCouplingCre driverDevelopmentDiseaseDown-RegulationEmbryonic DevelopmentExhibitsFibroblastsGene ExpressionGenesGeneticGenetic RecombinationGenetic TranscriptionGlutamatesGlycolysisGoalsHealthHippocampus (Brain)HistologyHomeostasisHourHumanHydrogen PeroxideImageKnock-outKnockout MiceLabelLightLinkMammalsMapsMeasuresMediatingMetabolicMetabolismModelingMolecularMusNADPNeurodegenerative DisordersNeuronal DifferentiationNeuronsOxidation-ReductionOxidative PhosphorylationOxidative StressParkinson DiseasePathway interactionsPentosephosphate PathwayPhasePhysiological ProcessesPost-Translational Protein ProcessingProcessProductionReactive Oxygen SpeciesRegulationReporterResearchResearch TrainingRoleSignal TransductionStainsStem cell pluripotencySynapsesTamoxifenTestingThymidineTimeTrainingTransgenesTransgenic OrganismsVenusadult neurogenesisadult stem cellage relatedanalogbasebiological adaptation to stresscell typecircadiancircadian pacemakercofactordirected differentiationembryonic stem cellexcitatory neurongenome editinggranule cellhuman embryonic stem cellin vitro Modelin vivoin vivo Modelinduced pluripotent stem cellnerve stem cellneurogenesisneuronal circuitrynovelpluripotencyself-renewalsensorstem cell differentiationstem cell divisionstem cell homeostasisstem cell modelstem cellstooltranscription factor
项目摘要
Project Summary
Circadian rhythms are necessary to coordinate the timing of key behavioral and physiological processes in
mammals [1-3]. However, while our understanding of the function of circadian clock genes in embryonic
development is rapidly advancing [4-6], the molecular mechanisms through which these rhythms emerge
during stem cell differentiation remain elusive [7]. Recently, signaling by reactive oxygen species (redox
signaling) has emerged as an essential link between cellular metabolism and circadian rhythms in adult
function [8, 9]. Signaling from the pentose phosphate pathway through production of redox cofactor NADPH is
an important regulator of transcriptional oscillations, influencing the expression of core circadian clock genes
through the redox-sensitive transcription factor NRF2 [10]. NRF2 is a crucial regulator of embryonic stem cell
pluripotency and self-renewal, but whether redox signaling contributes to the development of circadian rhythms
in differentiating stem cells remains completely unexplored [11].
Using fluorescent reporters of the hydrogen peroxide and Per2 expression, we propose to simultaneously
visualize reactive oxygen species and circadian rhythms in single cells for the first time. By combining this
novel model system with CRISPR/Cas9-mediated genome editing approaches, we will causally test the role of
redox signaling in the development of circadian rhythms in human induced pluripotent stem cells undergoing
directed differentiation to glutamatergic neurons. Using adult hippocampal neurogenesis as an in vivo model
system for neuronal differentiation, we will further explore the function of redox-circadian coupling in
coordinating the sequential development and circuit integration of adult-born granule cells.
The long-term objective of this proposal is to create a novel model system to explore the mechanisms through
which reciprocal interaction between redox and circadian transcription factor networks direct the proper
sequential timing of development. While the current proposal seeks to investigate how redox-circadian
coupling drives the differentiation of pluripotent and adult stem cells, we aim to describe a general paradigm for
the coordination of metabolism, cell division, and stem cell homeostasis in health and disease.
Hypothesis: We hypothesize that redox signaling drives the development of circadian rhythms in stem cells
following the loss of pluripotency, and that reciprocal regulation between redox signaling and circadian rhythms
drives the cellular maturation. We predict that disrupting redox-circadian coupling in adult neural stem cells
through acute Nrf2 knockout will induce cell division and differentiation, but hinder the development of
circadian rhythms and normal maturation of adult-born granule cells. We will test this hypothesis in the
following aims:
Aim 1: Causally link redox signaling to circadian rhythm development in human induced pluripotent stem cells
Aim 2: Determine impact of Nrf2 KO-mediated disruption of redox-circadian coupling on adult neurogenesis
项目概要
昼夜节律对于协调关键行为和生理过程的时间是必要的。
哺乳动物 [1-3]。然而,虽然我们对胚胎中生物钟基因的功能的了解
发育正在迅速推进[4-6],这些节律出现的分子机制
干细胞分化过程中的变化仍然难以捉摸[7]。最近,活性氧(氧化还原
信号)已成为成人细胞代谢和昼夜节律之间的重要联系
函数 [8, 9]。戊糖磷酸途径通过产生氧化还原辅因子 NADPH 发出的信号是
转录振荡的重要调节因子,影响核心生物钟基因的表达
通过氧化还原敏感转录因子 NRF2 [10]。 NRF2是胚胎干细胞的重要调节因子
多能性和自我更新,但氧化还原信号是否有助于昼夜节律的发展
分化干细胞的作用尚未完全被探索[11]。
使用过氧化氢和 Per2 表达的荧光报告基因,我们建议同时
首次将单细胞中的活性氧和昼夜节律可视化。通过结合这个
采用 CRISPR/Cas9 介导的基因组编辑方法的新型模型系统,我们将因果测试其作用
氧化还原信号在人类诱导多能干细胞昼夜节律发育中的作用
定向分化为谷氨酸能神经元。使用成人海马神经发生作为体内模型
神经元分化系统中,我们将进一步探讨氧化还原-昼夜节律耦合在神经元分化中的功能
协调成年颗粒细胞的顺序发育和电路整合。
该提案的长期目标是创建一个新颖的模型系统,通过以下方式探索机制:
氧化还原和昼夜节律转录因子网络之间的相互作用指导正确的
发展的顺序时间。虽然当前的提案旨在研究氧化还原昼夜节律如何
耦合驱动多能干细胞和成体干细胞的分化,我们的目标是描述一个通用范例
健康和疾病中新陈代谢、细胞分裂和干细胞稳态的协调。
假设:我们假设氧化还原信号驱动干细胞昼夜节律的发展
多能性丧失后,以及氧化还原信号和昼夜节律之间的相互调节
促进细胞成熟。我们预测,破坏成体神经干细胞中的氧化还原-昼夜节律耦合
通过急性Nrf2敲除会诱导细胞分裂和分化,但会阻碍细胞的发育
昼夜节律和成年颗粒细胞的正常成熟。我们将在
以下目标:
目标 1:将氧化还原信号传导与人类诱导多能干细胞的昼夜节律发育联系起来
目标 2:确定 Nrf2 KO 介导的氧化还原-昼夜节律耦合破坏对成人神经发生的影响
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Maxim Iascone其他文献
Daniel Maxim Iascone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Maxim Iascone', 18)}}的其他基金
Coupling between circadian rhythms and redox signaling in stem cell differentiation and adult neurogenesis
干细胞分化和成体神经发生中昼夜节律与氧化还原信号之间的耦合
- 批准号:
10524773 - 财政年份:2020
- 资助金额:
$ 7.22万 - 项目类别:
Whole-neuron structural input mapping of SRGAP2 regulation of synaptic development
SRGAP2 突触发育调节的全神经元结构输入图谱
- 批准号:
9328662 - 财政年份:2017
- 资助金额:
$ 7.22万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Mechanistic evaluation of the role of circadian rhythms in acute lung injury and subsequent recovery
昼夜节律在急性肺损伤及随后恢复中作用的机制评估
- 批准号:
10491281 - 财政年份:2021
- 资助金额:
$ 7.22万 - 项目类别:
Mechanistic evaluation of the role of circadian rhythms in acute lung injury and subsequent recovery
昼夜节律在急性肺损伤及随后恢复中作用的机制评估
- 批准号:
10299011 - 财政年份:2021
- 资助金额:
$ 7.22万 - 项目类别:
Mechanistic evaluation of the role of circadian rhythms in acute lung injury and subsequent recovery
昼夜节律在急性肺损伤及随后恢复中作用的机制评估
- 批准号:
10686064 - 财政年份:2021
- 资助金额:
$ 7.22万 - 项目类别:
Circadian Clock Disruption in the Pathogenesis and Therapy of Polycystic Kidney Disease
多囊肾病发病机制和治疗中的昼夜节律紊乱
- 批准号:
10475900 - 财政年份:2021
- 资助金额:
$ 7.22万 - 项目类别:
Coupling between circadian rhythms and redox signaling in stem cell differentiation and adult neurogenesis
干细胞分化和成体神经发生中昼夜节律与氧化还原信号之间的耦合
- 批准号:
10524773 - 财政年份:2020
- 资助金额:
$ 7.22万 - 项目类别: