Microbial-derived purines in intestinal homeostasis
微生物来源的嘌呤在肠道稳态中的作用
基本信息
- 批准号:10415604
- 负责人:
- 金额:$ 0.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AntigensApoptosis Regulation GeneBacteriaBacterial TranslocationBasic ScienceBiochemicalCaco-2 CellsCell LineCell physiologyCellsChronicClinicalColitisColonDiseaseEnvironmentEpithelial CellsFeedbackFosteringFoundationsGastrointestinal tract structureGerm-FreeGlycolysisGoblet CellsHealthHomeostasisHypoxanthinesHypoxiaImmune responseImmune systemImmunizationInflammationInflammatoryInflammatory Bowel DiseasesInjuryIntestinal MucosaIntestinesKnockout MiceLiquid substanceLuciferasesMaintenanceMediatingMentorshipMetabolicMetabolismMicroarray AnalysisMicrobeModelingMolecularMucinsMucositisMucous MembraneMusNucleotidesNutrientPathogenesisPathogenicityPatientsPermeabilityPhysiologicalProductionPublishingPurinesRecoveryRegulationRelapseReporterResearchResolutionResourcesRoleScienceSodium Dextran SulfateSourceStressTP53 geneTestingTherapeuticTissuesTrainingWorkbasecare costsdextran sulfate sodium induced colitisdysbiosisexperiencegut microbiotahost microbiotaimprovedinflammatory disease of the intestineinsightinterestintestinal barrierintestinal epitheliumintestinal homeostasisknock-downlife time costmicrobialmicrobiotamicroorganismnovelprogramspromoterpurine metabolismrepairedresponseskillssmall hairpin RNAsmall moleculetissue repairtranscription factortrefoil factorwastingwound healing
项目摘要
PROJECT SUMMARY/ABSTRACT
In a healthy gastrointestinal (GI) tract, intestinal epithelial cells (IECs) form a dynamic physical and
biochemical barrier that maintains homeostasis by isolating the host immune system from an external
environment of pathogenic and commensal microorganisms. Disruption of this barrier increases bacterial
translocation, triggering inappropriate immune responses and unresolving inflammation. Dysregulation of IEC
barrier in inflammatory bowel disease (IBD) and dysbiosis of the intestinal microbiota coincides with profound
shifts in metabolic energy stores, especially in the colon, which exists in an energetically-vulnerable state of
physiologic hypoxia. Substantial interest lies in understanding immunometabolism as a window to the molecular
mechanisms of inflammatory progression or resolution, such as how metabolically active microbiota-derived
small molecules promote intestinal homeostasis. Our ongoing work has identified purines as significant products
of the intestinal microbiota. We identified a strong capacity for IECs to salvage hypoxanthine (Hpx) for ATP
production, coinciding with improved barrier and wound healing capabilities. Furthermore, an unbiased
microarray analysis of Hpx-treated T84 IECs identified TP53-inducible glycolysis and apoptosis regulator
(TIGAR) as an induced target. We postulate that TIGAR induction by Hpx is central to mediating metabolism in
response to purine availability or need for salvage due to stress-induced energetic deficits. In ongoing studies,
we found that germ-free (GF) mice monocolonized with purine-producing bacteria have significantly increased
colon tissue Hpx, with concomitant TIGAR induction. Further studies showed that the monocolonized mice were
protected from dextran sulfate sodium (DSS)-induced colitis. Based on these results, we hypothesize that
microbial-derived purines significantly contribute to intestinal homeostasis through TIGAR-mediated metabolic
shifts. Aim 1 will define the mechanism(s) of Hpx-dependent TIGAR induction and the impact of that induction
on purine metabolism. Aim 2 will elucidate the contribution of microbial-derived purines to intestinal homeostasis.
Aim 3 will utilize TIGAR knockout (-/-) mice to assess the baseline contribution of TIGAR to intestinal
homeostasis and inflammation resolution. This work lays a foundation for an IBD therapeutic in which patients
are treated with nonpathogenic microbes specifically modified to produce small molecules (e.g. purines) that
drive wound healing and inflammatory resolution.
This proposal will provide outstanding mentorship and training under the guidance of an experienced sponsor
in the ideal environment of a rigorous basic science lab that is well-integrated clinically, while having the
necessary resources and mentorship to complete each aspect of this project, including a mentorship team within
the Mucosal Inflammation Program. This training will foster the applicant’s independent science research skills
in cross-cutting work that advances therapeutics for tissue damage repair and novel disease target identification.
项目概要/摘要
在健康的胃肠道 (GI) 中,肠上皮细胞 (IEC) 形成动态的物理和
通过将宿主免疫系统与外部环境隔离来维持体内平衡的生化屏障
病原微生物和共生微生物的环境被破坏,细菌就会增加。
易位,引发不适当的免疫反应和无法解决的 IEC 失调。
炎症性肠病(IBD)和肠道菌群失调的屏障与深刻的相一致
代谢能量储存的变化,尤其是在结肠中,其处于能量脆弱状态
生理性缺氧的重要意义在于将免疫代谢理解为分子生物学的窗口。
炎症进展或消退的机制,例如代谢活跃的微生物群如何产生
我们正在进行的工作已确定嘌呤是重要的产品。
我们发现 IEC 具有将次黄嘌呤 (Hpx) 转化为 ATP 的强大能力。
生产,同时还提高了屏障和伤口愈合能力。
对 HPX 处理的 T84 IEC 进行微阵列分析,鉴定出 TP53 诱导的糖酵解和凋亡调节因子
(TIGAR) 作为诱导靶标,我们假设 Hpx 诱导的 TIGAR 对于介导代谢至关重要。
在正在进行的研究中,对嘌呤可用性或由于压力引起的能量不足而需要挽救的反应。
我们发现,单定植有产生嘌呤的细菌的无菌(GF)小鼠的数量显着增加
结肠组织 Hpx,同时进行 TIGAR 诱导,进一步研究表明,单克隆小鼠是
根据这些结果,我们得出结论:
微生物来源的嘌呤通过 TIGAR 介导的代谢显着促进肠道稳态
目标 1 将定义 Hpx 依赖性 TIGAR 诱导的机制以及该诱导的影响。
目标 2 将阐明微生物来源的嘌呤对肠道稳态的贡献。
目标 3 将利用 TIGAR 敲除 (-/-) 小鼠来评估 TIGAR 对肠道的基线贡献
这项工作为 IBD 治疗奠定了基础。
经过专门修饰的非病原性微生物处理,可产生小分子(例如嘌呤),
促进伤口愈合和炎症消退。
该提案将在经验丰富的赞助商的指导下提供出色的指导和培训
在严格的基础科学实验室的理想环境中,该实验室与临床充分整合,同时拥有
完成该项目各个方面所需的资源和指导,包括内部的指导团队
粘膜炎症计划该培训将培养申请人的独立科学研究技能。
从事跨领域工作,推进组织损伤修复和新疾病靶标识别的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Scott Lee其他文献
Joseph Scott Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Scott Lee', 18)}}的其他基金
Microbiota-sourced purines in gut health and disease
微生物群来源的嘌呤在肠道健康和疾病中的作用
- 批准号:
10283449 - 财政年份:2021
- 资助金额:
$ 0.69万 - 项目类别:
Microbiota-sourced purines in gut health and disease
微生物群来源的嘌呤在肠道健康和疾病中的作用
- 批准号:
10674832 - 财政年份:2021
- 资助金额:
$ 0.69万 - 项目类别:
Microbiota-sourced purines in gut health and disease
微生物群来源的嘌呤在肠道健康和疾病中的作用
- 批准号:
10475271 - 财政年份:2021
- 资助金额:
$ 0.69万 - 项目类别:
相似国自然基金
Circ-AKT3基因调控非小细胞肺癌免疫治疗中自噬凋亡的小分子显像研究
- 批准号:82302260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宿主凋亡抑制因子5调控IBDV基因组dsRNA诱导的细胞凋亡机制研究
- 批准号:32302847
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FBN1基因p.R62C突变调控内质网应激促进细胞凋亡在先天性晶状体脱位中的机制研究
- 批准号:82271068
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
PTEN/L基因调控顺铂所致听觉细胞线粒体自噬及凋亡的机制研究
- 批准号:82271164
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
THZ1通过CDK7抑制RNAPII磷酸化调控超级增强子及关联的致癌基因导致胃癌细胞凋亡的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of CD4+ Memory T cell Subtypes in Periodontal Disease Recurrence
CD4 记忆 T 细胞亚型在牙周病复发中的作用
- 批准号:
10642981 - 财政年份:2023
- 资助金额:
$ 0.69万 - 项目类别:
Microbiota-sourced purines in gut health and disease
微生物群来源的嘌呤在肠道健康和疾病中的作用
- 批准号:
10283449 - 财政年份:2021
- 资助金额:
$ 0.69万 - 项目类别:
Understanding the functional agility of effector memory CD8 T cells
了解效应记忆 CD8 T 细胞的功能敏捷性
- 批准号:
10296829 - 财政年份:2021
- 资助金额:
$ 0.69万 - 项目类别:
Understanding the functional agility of effector memory CD8 T cells
了解效应记忆 CD8 T 细胞的功能敏捷性
- 批准号:
10296829 - 财政年份:2021
- 资助金额:
$ 0.69万 - 项目类别:
Microbiota-sourced purines in gut health and disease
微生物群来源的嘌呤在肠道健康和疾病中的作用
- 批准号:
10674832 - 财政年份:2021
- 资助金额:
$ 0.69万 - 项目类别: