Mechanobiology of Progenitor Cells in Heterotopic Ossification
异位骨化中祖细胞的力学生物学
基本信息
- 批准号:10401824
- 负责人:
- 金额:$ 33.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:ACVR1 geneAdoptionBiologicalBiological AssayBiomechanicsBone Morphogenetic ProteinsBone TissueCartilageCell Differentiation processCell Fate ControlCell Surface ReceptorsCell TransplantationCellsCellular biologyCellularityChondrocytesChondrogenesisConnective TissueConnective and Soft TissueDNA Sequence AlterationDataDevelopmentDirect Lytic FactorsDiseaseEnvironmentExcisionFiberGenesGeneticGenetic DiseasesHeterotopic OssificationHumanHuman GeneticsImpairmentIn VitroInflammatoryInjuryInvestigationLesionLigandsLinkMechanicsMediatingMedicineMesenchymalMesenchymal Stem CellsMolecular BiologyMusMuscleMuscle FibersMuscle satellite cellMutationNatural regenerationOsteoblastsOsteogenesisOutcomePathway interactionsPhysiologic OssificationPopulationProcessProductionPropertyReceptor Mediated Signal TransductionResearchSignal PathwaySignal TransductionSignaling ProteinSkeletal MuscleTestingTherapeutic InterventionTissue DifferentiationTissue EngineeringTissuesTransplantationWritingbasebonebone morphogenetic protein receptor type Iclinical applicationcrosslinkdensityextracellulargain of functionhealingimpaired capacityin vivoinsightlipid biosynthesismalformationmechanical propertiesmechanotransductionmouse modelmultidisciplinarymuscle regenerationmutantnew therapeutic targetnon-geneticnovelosteogenicphysical propertypreventprogenitorprogramsprogressive myositis ossificansrare genetic disorderreceptorreconstitutionrepairedresponserestorationsatellite cellskeletalstem cell biologystem cell populationstem cellstherapy developmenttissue injurytissue repairwoundwound environmentwound healing
项目摘要
Abstract
Although rare genetic disorders directly impact relatively small segments of the population, they are caused by
mutations in genes with such critical importance that perturbed function is rarely tolerated, and therefore offer
unique insight into fundamental cellular mechanisms. One such disease, fibrodysplasia ossificans progressiva
(FOP), is caused by misregulated control of cell fate decisions that leads to congenital skeletal malformations
and disabling extra-skeletal (heterotopic) endochondral ossification (HO) that often forms in response to tissue
injury. Notably, this de novo bone formation is associated with an impaired muscle repair response. We
identified that all familial and sporadic cases with classic features of FOP carry the same heterozygous
mutation in ACVR1/ALK2 (R206H; c.617G>A), a cell surface receptor that mediates signal transduction of
bone morphogenetic proteins (BMPs). Our data showed that the ACVR1 R206H mutant receptors mildly
activate the BMP signaling pathway in the presence or absence of BMP ligands. This proposal seeks to
identify how the resulting gain of function in ACVR1/BMP signaling diverts the program of muscle repair from
one that normally culminates in restoration of muscle tissue to one in which muscle injury leads to
differentiation of endogenous mesenchymal progenitor cells (MSCs) to chondrocytes and osteoblasts and the
formation of heterotopic bone tissue. Previous studies confirmed cell autonomous effects of the mutation on
MSC differentiation, however, while the mutation enhances MSC chondro/osteogenesis, we have also
established that mutant cells do not spontaneously differentiate, but require additional signals. Since
commitment and differentiation of tissue-resident progenitor cells is regulated by signals from the tissue
microenvironment, and the tissue microenvironment is itself defined by matrix production by these
differentiating cells, this proposal focuses on how enhanced BMP pathway signaling in FOP changes cellular
interpretation and fabrication of the biomechanical environment during muscle repair. Based on our preliminary
data showing altered physical (mechanical) properties of mutant skeletal muscle tissue following injury, this
proposal will first investigate and identify the mechanisms (cellularity, matrix, and stiffness) through which
ACVR1 R206H mutant tissue alters the connective tissue microenvironment during the early response to
muscle injury (Aim 1). Next, we will examine the mechano-sensing signaling mechanisms through which
chondro/osseous mesenchymal (non-myogenic) progenitor cells (MSCs) differentially sense and interpret
signals from their microenvironment (Aim 2). Finally, we will determine the effects of the mutant tissue
microenvironment on endogenous myogenic muscle progenitor cells (MuSCs, Aim 3). Together, these data will
identify novel mechano-regulatory mechanisms controlling cell differentiation in heterotopic ossification and
muscle repair and as well as reveal new targets for therapeutic interventions to prevent genetic and non-
genetic forms of HO and to engineer tissues for clinical application.
抽象的
尽管罕见的遗传性疾病直接影响相对较小的人群,但它们是由
基因突变的重要性如此之高,以至于功能受到干扰很少被容忍,因此提供了
对基本细胞机制的独特见解。其中一种疾病是进行性骨化性纤维发育不良
(FOP),是由细胞命运决定的失调控制引起的,导致先天性骨骼畸形
并禁用通常因组织反应而形成的骨骼外(异位)软骨内骨化(HO)
受伤。值得注意的是,这种从头骨形成与肌肉修复反应受损有关。我们
确定所有具有 FOP 典型特征的家族性和散发性病例都携带相同的杂合子
ACVR1/ALK2(R206H;c.617G>A)突变,这是一种介导信号转导的细胞表面受体
骨形态发生蛋白(BMP)。我们的数据表明 ACVR1 R206H 突变受体轻度
在 BMP 配体存在或不存在的情况下激活 BMP 信号通路。该提案旨在
确定 ACVR1/BMP 信号传导中所产生的功能增益如何将肌肉修复程序从
通常最终导致肌肉组织恢复为肌肉损伤导致的一种
内源性间充质祖细胞(MSC)向软骨细胞和成骨细胞的分化以及
异位骨组织的形成。先前的研究证实了突变对细胞自主的影响
然而,MSC 分化虽然突变增强了 MSC 软骨/成骨,但我们也发现
确定突变细胞不会自发分化,而是需要额外的信号。自从
组织驻留祖细胞的定型和分化受来自组织的信号调节
微环境,组织微环境本身是由这些基质产生的
分化细胞,该提案重点关注 FOP 中增强的 BMP 通路信号传导如何改变细胞
肌肉修复过程中生物力学环境的解释和构建。根据我们的初步
数据显示突变骨骼肌组织在受伤后物理(机械)特性发生改变,这
该提案将首先调查并确定机制(细胞结构、基质和刚度)
ACVR1 R206H 突变组织在早期反应期间改变结缔组织微环境
肌肉损伤(目标 1)。接下来,我们将研究机械传感信号机制
软骨/骨间充质(非肌源性)祖细胞(MSC)有不同的感知和解释
来自微环境的信号(目标 2)。最后,我们将确定突变组织的影响
内源性肌源性肌肉祖细胞(MuSC,目标 3)的微环境。这些数据一起将
确定控制异位骨化中细胞分化的新机械调节机制
肌肉修复,并揭示治疗干预的新目标,以预防遗传性和非遗传性疾病
HO 的遗传形式并设计用于临床应用的组织。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fibrodysplasia ossificans progressiva mutant ACVR1 signals by multiple modalities in the developing zebrafish.
进行性骨化性纤维发育不良突变体 ACVR1 在发育中的斑马鱼中通过多种方式发出信号。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:7.7
- 作者:Allen, Robyn S;Tajer, Benjamin;Shore, Eileen M;Mullins, Mary C
- 通讯作者:Mullins, Mary C
Fibrodysplasia ossificans progressiva (FOP): A disorder of osteochondrogenesis.
进行性骨化性纤维发育不良 (FOP):一种骨软骨生成障碍。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:4.1
- 作者:Kaplan, Frederick S;Al Mukaddam, Mona;Stanley, Alexandra;Towler, O Will;Shore, Eileen M
- 通讯作者:Shore, Eileen M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert L Mauck其他文献
Robert L Mauck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert L Mauck', 18)}}的其他基金
Activation of endogenous progenitors via a nanoparticle-conjugated fibrous system to enhance meniscus repair
通过纳米颗粒共轭纤维系统激活内源祖细胞以增强半月板修复
- 批准号:
10607306 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10704534 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10248368 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Hydrogel Delivery of Extracellular Vesicles to Treat Osteoarthritis
水凝胶递送细胞外囊泡治疗骨关节炎
- 批准号:
10631851 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10454898 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Hydrogel Delivery of Extracellular Vesicles to Treat Osteoarthritis
水凝胶递送细胞外囊泡治疗骨关节炎
- 批准号:
10176189 - 财政年份:2020
- 资助金额:
$ 33.48万 - 项目类别:
Mechanobiology of Progenitor Cells in Heterotopic Ossification
异位骨化中祖细胞的力学生物学
- 批准号:
9926811 - 财政年份:2018
- 资助金额:
$ 33.48万 - 项目类别:
相似国自然基金
采用羟基磷酸化策略提高抗菌肽生物活性的构效关系研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用合成生物学方法建立高效合成中长链PHA的恶臭假单胞菌KT2440小基因组细胞工厂
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用合成生物学技术在苯系物高效降解菌中构建多环芳烃代谢通路并定向改造菌株的耐盐能力
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
采用分子组装新策略构筑聚类肽生物高分子材料的研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
采用单像素时间分辨测量的生物组织NIR-II宽场荧光断层成像
- 批准号:62075156
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
A biomarker-driven strategy to guide the use of radiotherapy in non-small cell lung cancer
指导非小细胞肺癌放疗使用的生物标志物驱动策略
- 批准号:
10518064 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Emergent Technology for Studying the Structure/Function Relationship of Enzymes Using Electron Paramagnetic Resonance
利用电子顺磁共振研究酶结构/功能关系的新兴技术
- 批准号:
10630488 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Multicomponent Modeling of High-Dimensional Multiparametric MRI Data
高维多参数 MRI 数据的多分量建模
- 批准号:
10861533 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别: