A biomarker-driven strategy to guide the use of radiotherapy in non-small cell lung cancer
指导非小细胞肺癌放疗使用的生物标志物驱动策略
基本信息
- 批准号:10518064
- 负责人:
- 金额:$ 35.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccountingAdoptionArchitectureBRAF geneBiological MarkersBiopsy SpecimenCalibrationCancer EtiologyCancer PatientCancer cell lineCatalogsCatalytic DomainCategoriesCell SurvivalCellsCessation of lifeChemicalsClassificationClinicalClinical ResearchClinical TrialsCollectionComplementDataDependenceDrug CombinationsEvolutionExperimental ModelsFrequenciesGene ExpressionGeneticGenetic DeterminismGenetic VariationGenomicsGeographyGoalsImmunofluorescence ImmunologicIndividualInvestigationLung NeoplasmsMEKsMalignant NeoplasmsMalignant neoplasm of lungMeasuresMethodsMinorMolecularMutationNF-E2-related factor 2Non-Small-Cell Lung CarcinomaOperative Surgical ProceduresOutcomePIK3CA genePathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPhosphatidylinositolsPhosphotransferasesProto-Oncogene Proteins B-rafRadiationRadiation ToleranceRadiation therapyRadiosensitizationRecurrenceRegimenResearchResistanceRoleSamplingTechnologyTestingTherapeuticTimeTranslationsTumor Cell LineUnited StatesVariantWorkactionable mutationbiomarker drivencancer cellcancer typechemoradiationchemotherapyclinical translationclinically actionableefficacy evaluationexome sequencingexperimental studygenetic variantgenomic datain vivoindividual patientinhibitorinnovationkinase inhibitorlung cancer cellmathematical modelmortalitymouse modelneoplastic cellnovel therapeuticsoutcome predictionpalliativepatient derived xenograft modelprogramsradiation resistanceradiation responseradioresistantresponsestandard of caresynergismtargeted treatmenttumortumor DNA
项目摘要
ABSTRACT
There is an urgent need to nominate biomarkers that are likely to predict the efficacy of radiotherapy and
accelerate their clinical translation. Efforts thus far have been limited in large part because the genetic features
regulating tumor cell survival and their frequency across and within individual cancer types had not been studied
on a large-scale. Our group completed the largest profiling effort of survival after radiation in cancer cell lines,
comprising a diverse collection of 533 genetically annotated tumor cell lines from 26 cancer types. To
complement this work, we recently initiated the systematic profiling of >1000 genetic variants that could
potentially contribute to the resistance of cancer cells to radiation. We combined results from our profiling efforts
to identify features that predict the resistance of lung cancer cells to radiation. The objective in this investigation
is to advance the clinical translation of two of the most important regulators of radiation resistance in lung cancer,
Nrf2 and Braf. The Nrf2 pathway is genetically altered in ~28% of patients with non-small cell lung cancer
(NSCLC) and cells with mutations in NFE2L2 or KEAP1 are the most highly correlated with resistance to
radiation. To identify genetic dependencies of Nrf2-active tumors, we used computational and experimental
approaches to demonstrate the frequent co-occurrence between Nrf2 and phosphoinositide 3-kinase (PI3K)
alteration in NSCLCs. Using genetic and chemical means we show that antagonizing the catalytic subunit of
PI3K, p110 (encoded by PIK3CA), decreases Nrf2 activity and reverses radiation resistance driven by this
pathway. These results provide the rationale to advance a radiosensitization strategy for patients with Nrf2-active
NSCLC by targeting PI3K. Our profiling efforts also demonstrate a critical role for BRAF, which is genetically
altered in ~7% of patients with NSCLC, in the resistance of lung cancer cells to radiation. We show, for the first
time, that BRAF kinase domain mutations confer resistance to radiation in lung cancers and that they, unlike
Nrf2 pathway alterations, are almost invariably a minor component of the tumor (i.e. they are subclonal). We use
mathematical and experimental models to show that clonal architecture has significant implications for the
likelihood of response to targeted therapies and radiation. Together, these results provide a compelling rationale
to examine the role of Nrf2 and Braf alterations in predicting outcomes after radiotherapy and advance a
genomically-guided radiosensitization strategy for patients with these tumors. If these hypotheses are correct,
our results will demonstrate that radiotherapeutic sensitizers can be selected based on both the identity and type
(clonal v. subclonal) of genetic alterations identified in a patient's cancer, prompting an evolution in the use of
radiation from a generic approach to one that is guided by the genetic composition of individual tumors.
抽象的
迫切需要提名可能预测放疗疗效的生物标志物
加速其临床转化。迄今为止的努力在很大程度上受到限制,因为遗传特征
尚未研究调节肿瘤细胞存活及其在个体癌症类型之间和内部的频率
大规模地。我们的团队完成了最大规模的癌细胞系辐射后存活率分析工作,
包含来自 26 种癌症类型的 533 个基因注释肿瘤细胞系。到
为了补充这项工作,我们最近启动了超过 1000 个遗传变异的系统分析,这些变异可以
可能有助于癌细胞对辐射的抵抗力。我们综合了分析工作的结果
确定预测肺癌细胞对辐射的抵抗力的特征。本次调查的目的
是为了推进肺癌中两种最重要的抗辐射调节因子的临床转化,
Nrf2 和 Braf。约 28% 的非小细胞肺癌患者的 Nrf2 通路发生基因改变
(NSCLC) 和 NFE2L2 或 KEAP1 突变的细胞与耐药性最相关
辐射。为了确定 Nrf2 活性肿瘤的遗传依赖性,我们使用了计算和实验
证明 Nrf2 和磷酸肌醇 3-激酶 (PI3K) 之间频繁共现的方法
NSCLC 的改变。使用遗传和化学手段,我们表明拮抗催化亚基
PI3K、p110(由 PIK3CA 编码)降低 Nrf2 活性并逆转由此驱动的辐射抵抗
途径。这些结果为推进 Nrf2 活性患者的放射增敏策略提供了理论依据
靶向 PI3K 的非小细胞肺癌。我们的分析工作还证明了 BRAF 的关键作用,它在遗传上具有重要意义。
大约 7% 的 NSCLC 患者肺癌细胞对放射的抵抗力发生了变化。我们首先展示
当时,BRAF 激酶结构域突变赋予肺癌对辐射的抵抗力,并且它们与
Nrf2 通路的改变几乎总是肿瘤的次要组成部分(即它们是亚克隆的)。我们使用
数学和实验模型表明克隆结构对
对靶向治疗和放射反应的可能性。这些结果共同提供了令人信服的理由
研究 Nrf2 和 Braf 改变在预测放疗后结果中的作用并推进
针对这些肿瘤患者的基因组引导放射增敏策略。如果这些假设正确的话
我们的结果将证明放射治疗敏化剂可以根据其特性和类型进行选择
(克隆与亚克隆)在患者癌症中发现的基因改变,促进了使用的演变
放射治疗从通用方法转变为以个体肿瘤的遗传组成为指导的方法。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Image-Based Deep Neural Network for Individualizing Radiotherapy Dose Is Transportable Across Health Systems.
基于图像的深度神经网络用于个性化放射治疗剂量,可跨卫生系统传输。
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:4.2
- 作者:Randall, James;Teo, P Troy;Lou, Bin;Shah, Jainil;Patel, Jyoti;Kamen, Ali;Abazeed, Mohamed E
- 通讯作者:Abazeed, Mohamed E
Clonal selection confers distinct evolutionary trajectories in BRAF-driven cancers.
克隆选择赋予 BRAF 驱动的癌症独特的进化轨迹。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:16.6
- 作者:Gopal, Priyanka;Sarihan, Elif Irem;Chie, Eui Kyu;Kuzmishin, Gwendolyn;Doken, Semihcan;Pennell, Nathan A;Raymond, Daniel P;Murthy, Sudish C;Ahmad, Usman;Raja, Siva;Almeida, Francisco;Sethi, Sonali;Gildea, Thomas R;Peacock, Craig D;Adams, Drew
- 通讯作者:Adams, Drew
An image-based deep learning framework for individualizing radiotherapy dose
用于个性化放射治疗剂量的基于图像的深度学习框架
- DOI:
- 发表时间:2024-09-14
- 期刊:
- 影响因子:0
- 作者:B. Lou;S. Doken;T. Zhuang;D. Wingerter;M. Gidwani;N. Mistry;Lance Ladic;A. Kamen;Mohamed;E. Abazeed
- 通讯作者:E. Abazeed
Cellular and Genetic Determinants of the Sensitivity of Cancer to α-Particle Irradiation.
癌症对α粒子辐照敏感性的细胞和遗传决定因素。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:11.2
- 作者:Yard, Brian D;Gopal, Priyanka;Bannik, Kristina;Siemeister, Gerhard;Hagemann, Urs B;Abazeed, Mohamed E
- 通讯作者:Abazeed, Mohamed E
Modeling Cellular Response in Large-Scale Radiogenomic Databases to Advance Precision Radiotherapy.
在大规模放射基因组数据库中模拟细胞反应以推进精准放射治疗。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:11.2
- 作者:Manem, Venkata Sk;Lambie, Meghan;Smith, Ian;Smirnov, Petr;Kofia, Victor;Freeman, Mark;Koritzinsky, Marianne;Abazeed, Mohamed E;Haibe;Bratman, Scott V
- 通讯作者:Bratman, Scott V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamed E. Abazeed其他文献
Mohamed E. Abazeed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohamed E. Abazeed', 18)}}的其他基金
Cellular plasticity gives rise to phenotypic equilibrium in small cell lung carcinoma
细胞可塑性导致小细胞肺癌的表型平衡
- 批准号:
10525950 - 财政年份:2022
- 资助金额:
$ 35.87万 - 项目类别:
A biomarker-driven strategy to guide the use of radiotherapy in non-small cell lung cancer
指导非小细胞肺癌放疗使用的生物标志物驱动策略
- 批准号:
9928028 - 财政年份:2018
- 资助金额:
$ 35.87万 - 项目类别:
A biomarker-driven strategy to guide the use of radiotherapy in non-small cell lung cancer
指导非小细胞肺癌放疗使用的生物标志物驱动策略
- 批准号:
10089004 - 财政年份:2018
- 资助金额:
$ 35.87万 - 项目类别:
A biomarker-driven strategy to guide the use of radiotherapy in non-small cell lung cancer
指导非小细胞肺癌放疗使用的生物标志物驱动策略
- 批准号:
10409631 - 财政年份:2018
- 资助金额:
$ 35.87万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
Prediction of nearest neighbor parameters for folding RNAs with modified nucleotides
预测具有修饰核苷酸的折叠 RNA 的最近邻参数
- 批准号:
10576175 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
The Center for Innovation and Translation of Point of Care Technologies for Equitable Cancer Care (CITEC)
公平癌症护理护理点技术创新与转化中心 (CITEC)
- 批准号:
10715740 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
A unified quantitative modeling strategy for multiplex assays of variant effect
用于变异效应多重分析的统一定量建模策略
- 批准号:
10646167 - 财政年份:2022
- 资助金额:
$ 35.87万 - 项目类别:
Containerizing tasks to ensure robust AI/ML data curation pipelines to estimate environmental disparities in the rural south
将任务容器化,以确保强大的 AI/ML 数据管理管道,以估计南部农村的环境差异
- 批准号:
10842665 - 财政年份:2022
- 资助金额:
$ 35.87万 - 项目类别: