Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
基本信息
- 批准号:7356026
- 负责人:
- 金额:$ 12.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressCardiovascular systemClassificationClinicalClinical TrialsComplexComputer softwareConditionDataData SetDevelopmentDiagnosisDiseaseDisease ManagementDisease regressionEvaluationEventFinancial costGene ExpressionHealthHealthcareInvasiveLeadLiteratureMalignant NeoplasmsMeasuresMethodsModelingNumbersPatientsProceduresPrognostic MarkerPulmonary EmbolismResearchResearch DesignResearch PersonnelRisk AssessmentSASSamplingScoreSourceStandards of Weights and MeasuresTechnologyTimeWorkbasedisorder riskimprovedindexingmalignant breast neoplasmoutcome forecastprognosticresponsesimulationtheoriestool
项目摘要
DESCRIPTION (provided by applicant): Accurate risk assessment and prediction of treatment responses are essential in health care. The potential clinical and financial consequences associated with incorrect assignment of prognostic groups signify the need for reliable prognostic indices and the rigorous evaluation of their accuracy. For complex diseases, any single marker is often inadequate for precise prediction. With dramatically increased availability of new prognostic markers, it is now possible to improve prognostic accuracy by combining information from several markers. This gives rise to the need for statistical approaches to the optimal usage of information from multiple sources to improve disease management. Our proposal aims to develop procedures to address this need. In studies designed to develop prognostic classifiers, markers are often measured at baseline and patients are followed over time for the occurrence of clinical conditions. Since the risk for the disease occurrence may change over time, the time domain must be incorporated when developing prognostic classifiers. Another challenge that arises is that the event times are not always observable due to censoring. Current statistical literature for analyzing event time data focuses primarily on model based methods and their validity relies on the model assumption. Such assumptions may not hold in practice, which may lead to biased or invalid predictions. In this proposal, we consider robust approaches to the development and evaluation of prognostic classifiers. We will focus on the following three aims. In Aim 1, we will develop robust methods for constructing an optimal composite score based on several markers. In Aim 2, we will evaluate and compare the prognostic potential of estimated prognostic scores and develop optimal decision rules for assigning prognostic groups. In Aim 3, we will provide procedures for identifying subjects who would benefit from a potentially expensive or invasive prognostic evaluation given an initial assessment. This project has access to a wide variety of real datasets which will guide the methodological research. Examples include 1) data from a study of patients diagnosed with pulmonary embolism; 2) data from the Cardiovascular Health Study; 3) gene expression data from a breast cancer study; and 4) data from an AIDS clinical trial. Our aims will require development of large sample distribution theory, small sample simulation studies and application to real data. Software to implement analyses will use standard statistical packages such as Splus or SAS and will be fully documented.
描述(由申请人提供):准确的风险评估和治疗反应的预测在医疗保健中至关重要。与预后群体不正确分配有关的潜在临床和财务后果表示对可靠的预后指数的需求以及对其准确性的严格评估。对于复杂的疾病,任何单个标记通常都不足以进行精确预测。随着新的预后标记的可用性大大提高,现在可以通过结合几种标记的信息来提高预后准确性。这引起了对来自多种来源的信息最佳用途的最佳用法的需求,以改善疾病管理。我们的建议旨在制定解决这一需求的程序。在旨在开发预后分类器的研究中,通常在基线时测量标记物,并且随着时间的流逝,患者以临床状况的发生。由于发生这种疾病的风险可能会随着时间而变化,因此在开发预后分类器时必须纳入时间域。出现的另一个挑战是,由于审查,事件时间并不总是可观察到的。当前用于分析事件时间数据的统计文献主要关注基于模型的方法及其有效性依赖于模型假设。这种假设可能无法在实践中成立,这可能导致偏见或无效的预测。在此提案中,我们考虑了预后分类器的开发和评估的强大方法。我们将重点关注以下三个目标。在AIM 1中,我们将开发出可靠的方法来基于多个标记来构建最佳复合分数。在AIM 2中,我们将评估和比较估计预后分数的预后潜力,并制定分配预后群体的最佳决策规则。在AIM 3中,我们将提供程序来确定将从初步评估中受益于潜在昂贵或侵入性预后评估的受试者。该项目可以访问各种各样的实际数据集,以指导方法论研究。例子包括1)来自诊断患有肺栓塞的患者的研究数据; 2)来自心血管健康研究的数据; 3)来自乳腺癌研究的基因表达数据; 4)来自AIDS临床试验的数据。我们的目标将需要发展大型样本分布理论,小样本模拟研究以及对真实数据的应用。实施分析的软件将使用标准的统计软件包,例如SPLUS或SAS,并将充分记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIANXI CAI其他文献
TIANXI CAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIANXI CAI', 18)}}的其他基金
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
- 批准号:
10652251 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别:
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
- 批准号:
10339668 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10453558 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10430273 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10185327 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10301407 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10617781 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8181612 - 财政年份:2007
- 资助金额:
$ 12.3万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
7185413 - 财政年份:2007
- 资助金额:
$ 12.3万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8501533 - 财政年份:2007
- 资助金额:
$ 12.3万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Addressing Barriers to the Comprehensive Use of Statins in HIV: The ABACUS-HIV Study
消除他汀类药物综合使用治疗艾滋病毒的障碍:ABACUS-HIV 研究
- 批准号:
10762138 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
PEARL 2.0: The impact of the Ending the HIV Epidemic initiative and risk factor interventions on the projected multimorbidity burden and healthcare costs for people aging with HIV in the United States
PEARL 2.0:“结束艾滋病毒流行”倡议和风险因素干预措施对美国艾滋病毒感染者的预计多重病负担和医疗保健费用的影响
- 批准号:
10886848 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
The Gut-Liver Axis in HIV-Related Non-Alcoholic Fatty Liver Disease
HIV 相关非酒精性脂肪肝中的肠肝轴
- 批准号:
10762284 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Leveraging HIV care systems to improve cardiovascular disease prevention in the Kingdom of eSwatini
利用艾滋病毒护理系统改善埃斯瓦蒂尼王国的心血管疾病预防
- 批准号:
10700286 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Evaluating Smoking Cessation and Harm Reduction Approaches among People Living with HIV/AIDS in South Africa
评估南非艾滋病毒/艾滋病感染者的戒烟和减少危害方法
- 批准号:
10653226 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别: