Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
基本信息
- 批准号:10339668
- 负责人:
- 金额:$ 74.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AftercareAutoimmuneClinicalClinical DataClinical ManagementClinical TrialsClinical assessmentsDataData SetDiseaseElectronic Health RecordGenetic Crossing OverGoldHealthcare SystemsHydroxychloroquineInflammatoryInstitutionJointsLinkMachine LearningMeasurementMethodologyMethodsMethotrexateModelingNational Institute of Arthritis and Musculoskeletal and Skin DiseasesOutcomeParticipantPatientsPhysiciansPopulationPrediction of Response to TherapyRandomizedRandomized Controlled Clinical TrialsRegistriesResearch DesignResourcesRheumatoid ArthritisSample SizeSiteStrategic PlanningSubgroupSulfasalazineSupervisionTNF geneTestingTherapy trialTreatment EffectivenessUnited States Department of Veterans AffairsWorkarmarthritis registryarthritis therapyarthropathiesbasecausal modelcompare effectivenessdata registryeffective therapyfunctional statusimprovedinhibitorinnovationmachine learning methodnoveloptimal treatmentspatient populationpatient subsetsperformance testspersonalized medicinepredicting responserecruitresponserheumatologistsupervised learningtreatment effecttreatment responsetreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Rheumatoid arthritis (RA) is the most common autoimmune joint disease with over 15 treatment options,
reflecting both advances in therapy as well as the heterogenous response to therapy. After the first line
therapy methotrexate (MTX), patients and their rheumatologist proceed on a trial-and-error approach to identify
the optimal treatment. A landmark randomized controlled clinical trial (RCT), RACAT, compared the
effectiveness of triple therapy-MTX, sulfasalazine, and hydroxychloroquine vs MTX and a tumor necrosis factor
inhibitor (TNFi). The RACAT subgroup analyses observed that some patients had a better response to one
treatment strategy vs the other. However, like most RCTs, it was underpowered to better characterize these
subgroups. Real-world data (RWD), such as electronic health record (EHR) and registry data, have a larger
sample size but lack the randomization and precise clinical measurements performed as part of clinical trials.
The objective of this proposal is to apply and rigorously test state-of-the-art methods that can combine the
strengths of RCT and RWD to extend RCT findings. RACAT was a Veterans Affairs (VA) based clinical trial
and thus many of their subjects also have EHR data in parallel, providing an ideal study design to test methods
to understand how well we can replicated RCT using RWD. In Aim 1, we test methods using semi-supervised
machine learning methods to impute RACAT clinical endpoints using EHR data; the linked RACAT data will be
used as the gold standard comparison. Next, we apply causal inference modeling comparing triple therapy vs
TNFi using EHR data with the imputed endpoints and validate results using the linked RACAT data. In Aim 2,
we apply novel causal modeling methods that enable us to examine subgroup findings using RWD. We will
identify subjects in the larger EHR and registries similar to RACAT subgroups, i.e. patients who benefitted
more from triple therapy vs TNFi or vice versa, and subjects who remained on TNFi throughout the trial and did
well. These larger populations will provide improved power to study potential predictors of treatment response.
Moreover, the integration of EHR data allows us to study a broader set of potential predictors not collected in
RCT or registry data. Our overarching hypothesis is that we will identify the clinical subgroups observed in
RACAT with differing response to treatments within the larger populations of RA patients in EHR and registry.
We will also identify novel predictors of response by using a broader set of clinical data available in EHR. This
study is significant because it will provide a blueprint for studies for extending RCT findings in datasets with
linked RCT and RWD, applicable to many treatments and conditions. This study is innovative because of its
approach to maximize the data available from RCTs with existing RWD using linked datasets, powering studies
to optimize RA therapy for different patients. This proposal also anticipates the growing ability of patients and
institutions to access EHR data, enabling previously siloed datasets to become part of data-driven studies to
advance clinical management of RA and other conditions.
项目摘要/摘要
类风湿关节炎(RA)是最常见的自身免疫性关节疾病,有15多种治疗选择,
反映了治疗方面的进步以及对治疗的异质反应。第一行之后
甲氨蝶呤治疗(MTX),患者及其风湿病学家采用试验方法进行识别
最佳处理。具有里程碑意义的随机对照临床试验(RCT),Racat,比较了
三重疗法MTX,磺胺贺嗪和羟基氯喹与MTX的有效性和肿瘤坏死因子
抑制剂(TNFI)。 Racat子组分析观察到,有些患者对一个患者的反应更好
治疗策略与另一个。但是,像大多数RCT一样,它不足以更好地描述这些
亚组。现实世界数据(RWD),例如电子健康记录(EHR)和注册表数据,具有较大的数据
样本量,但缺乏作为临床试验的一部分进行的随机分配和精确的临床测量。
该提案的目的是应用和严格测试可以结合使用的最先进方法
RCT和RWD的优势扩展了RCT发现。 Racat是基于退伍军人事务(VA)的临床试验
因此,他们的许多受试者也具有并行的EHR数据,为测试方法提供了理想的研究设计
要了解我们如何使用RWD复制RCT。在AIM 1中,我们使用半监督者测试方法
使用EHR数据将赛车临床终点的机器学习方法;链接的Racat数据将是
用作黄金标准比较。接下来,我们采用比较三重治疗与
TNFI使用EHR数据与估算的端点一起使用链接的Racat数据验证结果。在AIM 2中,
我们采用新颖的因果建模方法,使我们能够使用RWD检查亚组发现。我们将
识别较大的EHR和类似Racat子组的注册表中的受试者,即受益的患者
来自三重治疗与TNFI的更多信息,反之亦然,在整个试验过程中一直呆在TNFI上的受试者
出色地。这些较大的人群将提供改进的能力来研究治疗反应的潜在预测指标。
此外,EHR数据的集成使我们能够研究未在
RCT或注册表数据。我们的总体假设是,我们将确定在
在EHR和注册表中,对RA患者较大的患者种群中对治疗的反应不同。
我们还将通过使用EHR中提供的更广泛的临床数据来确定响应的新颖预测指标。这
研究之所以重要,是因为它将为研究扩展数据集的RCT调查结果提供蓝图
链接的RCT和RWD,适用于许多治疗和条件。这项研究是创新的,因为它
使用链接的数据集,使用现有RWD最大化RCT可用的数据,为研究提供动力
为不同患者优化RA疗法。该建议还预计患者的能力不断增长
访问EHR数据的机构,使以前的孤立数据集成为数据驱动研究的一部分
提高RA和其他条件的临床管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIANXI CAI其他文献
TIANXI CAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIANXI CAI', 18)}}的其他基金
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
- 批准号:
10652251 - 财政年份:2022
- 资助金额:
$ 74.84万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10453558 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10430273 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10185327 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10301407 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10617781 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8181612 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
7356026 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
7185413 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8501533 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
相似国自然基金
Th17细胞调控神经自身免疫性疾病的机制与临床转化
- 批准号:
- 批准年份:2020
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
活性氧ROS在调节性B细胞分化中的作用及其对于自身免疫性疾病的影响
- 批准号:81771736
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
强直性脊柱炎不同临床表型的遗传基因差异研究
- 批准号:31770988
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
髓过氧化物酶及基质金属蛋白酶的分子影像融合成像及其在多发性硬化临床前期和亚临床期诊断中的作用
- 批准号:81771297
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
DGKαζ双缺失小鼠—— 一种模拟临床自身免疫性肝炎的小鼠模型
- 批准号:81570514
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of Chronic Pancreatitis and Its Associated Pain
间充质干细胞治疗慢性胰腺炎及其相关疼痛的安全性和有效性
- 批准号:
10721284 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别:
High-throughput identification and transcriptional analysis of autoreactive T cells in individuals with membranous nephropathy.
膜性肾病患者自身反应性 T 细胞的高通量鉴定和转录分析。
- 批准号:
10725558 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别:
Retinal Ischemia Treatment by Oxygen Nanobubbles
氧纳米气泡治疗视网膜缺血
- 批准号:
10723843 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别:
Modulation of Protein S-nitrosylation Signaling as a Potential Therapeutic Breakthrough in Rheumatoid Arthritis
调节蛋白质 S-亚硝基化信号传导是类风湿关节炎的潜在治疗突破
- 批准号:
10817318 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别: