Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
基本信息
- 批准号:10221583
- 负责人:
- 金额:$ 19.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgingAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease therapyAmericanArtificial IntelligenceBig DataBiometryClassificationClinicalClinical ResearchClinical TrialsCognitionCognitiveCognitive agingComplexDataData CollectionData SetData SourcesDecision MakingDementiaDevelopmentDimensionsDiseaseDisease ProgressionEarly DiagnosisElderlyEnrollmentEnsureFoundationsFutureGenetic MarkersGenetic RiskGoalsHealthcareImpaired cognitionIndividualInternationalInvestigationK-Series Research Career ProgramsLife StyleLongitudinal cohortMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMentorsMentorshipMethodologyMethodsModelingNeurobiologyNeurodegenerative DisordersNeurologistNeurologyNeuropsychologyOutcomeParticipantPatientsPerformancePharmaceutical PreparationsPopulationPredictive AnalyticsPredictive ValuePrevention trialPrimary PreventionResearchResearch PersonnelSample SizeSamplingSecondary PreventionStatistical MethodsStructureTechniquesTherapeutic EffectUnited StatesUniversitiesWashingtonWorkagedamyloid imagingarmbasebiological heterogeneitycareercareer developmentclinical biomarkersclinical decision-makingclinical heterogeneityclinical practicecognitive changecohortcomparativecomputational neurosciencecostdata harmonizationdata qualitydemographicsdiagnostic accuracyeffective therapyfeature selectionfollow-upfunctional declinefunctional outcomeshigh riskimaging biomarkerimprovedinnovationmachine learning methodmild cognitive impairmentmultidimensional dataneuroimagingnovelparticipant enrollmentpatient orientedpre-clinicalpredict clinical outcomepredictive modelingpredictive toolspreventprodromal Alzheimer&aposs diseaseprognosticresearch studyrisk predictionstructured datasuccess
项目摘要
Project Summary/Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a major global
healthcare burden. However, there is still no effective disease modifying therapy for AD and
clinical trials with the aim of preventing or stabilizing cognitive impairment have largely failed.
Decision making in both clinical practice and research is highly dependent on practical predictive
tools, which can effectively predict cognitive or functional outcomes in individuals. Such models
could be potentially used in clinical research to boost the power of trials by enrollment of
participants who are most likely to show disease progression during the trial’s timeframe.
Alternatively, these models could be used to identifying individuals who would benefit from
primary or secondary prevention once there are effective treatments for AD. In this project, we
aim to provide a framework for practical prediction of cognitive decline with aging and prodromal
AD, by applying a novel ML framework to multiple dimensions of data (demographics, genetic risk
scores, neuropsychological measures, structural MRI, and amyloid imaging). Our ultimate goal is
to arrive at a new “Machine Learning predictive framework for aging and AD” (ML4AD), comprised
of dimensions each of which each will add incremental value to the predictive models, hence
increasing the performance of predictive models while keeping the costs and burden of research
at a minimum. The candidate for this Mentored Patient-Oriented Career Development Award
(K23), Dr. Ali Ezzati, is a Neurologist whose career goal is to develop predictive tools to help
research and clinical decision making in cognitive aging and dementia. The proposed research
will leverage the rich clinical and biomarker dataset available from several ongoing international
studies, but will also provide a unique avenue of investigation for the candidate. The candidate's
career development will benefit from close mentorship and scientific guidance of outstanding
investigators in aging/AD neurobiology (Dr. Lipton), machine learning and computational
neuroscience (Dr. Davatzikos), and biostatistics (Dr. Hall). The findings from this study will inform
future secondary prevention trials, in which sensitive indicators of early AD will be necessary to
identify high-risk subjects and track early clinical decline. This work will serve as the foundation
to move forward in independent research focusing on development of predictive tools in AD and
related neurodegenerative disorders.
Key words: Alzheimer’s Disease, Dementia, Mild Cognitive Impairment, Cognitive neurology,
Artificial Intelligence, Machine Learning, Predictive Analytics, Longitudinal Cohort, Big Data
项目概要/摘要
阿尔茨海默病(AD)是导致老年人痴呆的最常见原因,是全球主要的疾病
然而,目前还没有有效的 AD 和疾病缓解疗法。
旨在预防或稳定认知障碍的临床试验基本上失败了。
临床实践和研究中的决策高度依赖于实际预测
工具,可以有效地预测此类模型的认知或功能结果。
可能用于临床研究,通过招募受试者来提高试验的效力
在试验期间最有可能出现疾病进展的参与者。
或者,这些模型可用于识别将从中受益的个人
一旦找到有效的 AD 治疗方法,我们就进行一级或二级预防。
旨在为衰老和前驱期认知衰退的实际预测提供框架
AD,通过将新颖的机器学习框架应用于多个维度的数据(人口统计、遗传风险)
我们的最终目标是(评分、神经心理学测量、结构 MRI 和淀粉样蛋白成像)。
得出一个新的“衰老和AD的机器学习预测框架”(ML4AD),包括
每个维度都会为预测模型增加增量价值,因此
提高预测模型的性能,同时保持研究成本和负担
至少是该“以患者为导向的职业发展奖”的候选人。
(K23),Ali Ezzati 博士,是一位神经科医生,其职业目标是开发预测工具来帮助
认知衰老和痴呆症的研究和临床决策。
将利用来自多个正在进行的国际项目的丰富的临床和生物标志物数据集
研究,但也将为候选人提供独特的调查途径。
职业发展将受益于优秀人才的密切指导和科学指导
衰老/AD 神经生物学研究人员(Lipton 博士)、机器学习和计算
这项研究的结果将为神经科学(Davatzikos 博士)和生物统计学(Hall 博士)提供信息。
未来的二级预防试验中,需要早期 AD 的敏感指标
识别高风险受试者并跟踪早期临床衰退这项工作将作为基础。
推进独立研究,重点关注 AD 和预测工具的开发
相关的神经退行性疾病。
关键词: 阿尔茨海默病, 痴呆, 轻度认知障碍, 认知神经病学,
人工智能、机器学习、预测分析、纵向队列、大数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Ezzati其他文献
Ali Ezzati的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Ezzati', 18)}}的其他基金
Validation of the Remote Cognitive Aging and Alzheimer’s Disease REsearch (R-CARE) Toolbox for Diverse Populations
针对不同人群的远程认知衰老和阿尔茨海默病研究 (R-CARE) 工具箱的验证
- 批准号:
10737723 - 财政年份:2023
- 资助金额:
$ 19.76万 - 项目类别:
Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
- 批准号:
9976247 - 财政年份:2020
- 资助金额:
$ 19.76万 - 项目类别:
Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
- 批准号:
10401440 - 财政年份:2020
- 资助金额:
$ 19.76万 - 项目类别:
Predictive analytics for cognitive decline and Alzheimer’s disease
认知能力下降和阿尔茨海默病的预测分析
- 批准号:
10626743 - 财政年份:2020
- 资助金额:
$ 19.76万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
湿热老化下的CFRP胶-螺连接结构疲劳失效机理研究
- 批准号:52305160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Measurement of cognition and functional decline in Latinx older adults for detection of Alzheimer’s Disease and Related Dementias: A mixed-methods approach
测量拉丁裔老年人的认知和功能下降以检测阿尔茨海默病和相关痴呆症:混合方法
- 批准号:
10569697 - 财政年份:2023
- 资助金额:
$ 19.76万 - 项目类别:
Alzheimer's disease-specific extracellular vesicles: from pathology to novel biomarker discovery
阿尔茨海默病特异性细胞外囊泡:从病理学到新生物标志物的发现
- 批准号:
10739392 - 财政年份:2023
- 资助金额:
$ 19.76万 - 项目类别:
Odor memory and functional neuroimaging in cognitively impaired older adults and Alzheimer's disease
认知障碍老年人和阿尔茨海默病的气味记忆和功能神经影像
- 批准号:
10590472 - 财政年份:2023
- 资助金额:
$ 19.76万 - 项目类别:
Associations of Mitochondrial DNA Alterations with Alzheimer's Disease Related Brain Health
线粒体 DNA 改变与阿尔茨海默病相关大脑健康的关联
- 批准号:
10724103 - 财政年份:2023
- 资助金额:
$ 19.76万 - 项目类别:
Utilizing gene-level biomarkers of AD to identify pathophysiological mechanisms in human neurons
利用 AD 的基因水平生物标志物识别人类神经元的病理生理机制
- 批准号:
10727531 - 财政年份:2023
- 资助金额:
$ 19.76万 - 项目类别: