Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
基本信息
- 批准号:10212669
- 负责人:
- 金额:$ 228.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAddressAffectAlzheimer disease screeningAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAmericanAmyloid beta-ProteinBehaviorBehavior TherapyBehavior monitoringBiological MarkersCause of DeathCellsClinicalClinical TrialsCognitionCognitiveComputersDataData SetDetectionDisease ProgressionEarly InterventionEarly identificationElectronic Health RecordFailureHealth SciencesHeart DiseasesHomeImageIndividualInternetIntervention StudiesInterviewJointsLanguageLanguage DevelopmentLinguisticsLinkMachine LearningMalignant NeoplasmsMeasurementMeasuresMedical HistoryMemory LossModalityModelingMonitorNatural Language ProcessingNeuropsychological TestsOregonOutpatientsParticipantPathologicPatient Self-ReportPatientsPatternPerformanceProtocols documentationRandomizedRiskScientistSignal TransductionStructureTest ResultTimeUnited StatesUniversitiesVideo Recordingaging and technologybasebrain cellcognitive changecohortcost effectivedeep learningdeep reinforcement learningdemographicsdigitaleffective therapyimprovedin vivoinformation frameworklearning algorithmmachine learning algorithmmachine learning methodmild cognitive impairmentmultimodalitynovelpredictive modelingprofiles in patientsscreeningsensorsuccesstau Proteinsuser-friendlywalking speed
项目摘要
Project Summary
Recent estimates indicate that Alzheimer’s disease (AD) may rank as the third leading cause of death
for older people in the United States, just behind heart disease and cancer. While scientists know that
AD involves a progressive brain cell failure, the reason why cells fail is still not clear. To understand the
progression of the disease, one of the keys is to investigate the cognitive changes in patients with mild
cognitive impairment (MCI). Even though biomarkers such as imaging and clinical functions are found
to be outstanding in differentiating AD patients from those with normal cognition (NC), studies suggest
that their discriminative power in early-stage MCI are rather limited. Detecting signals which distinguish
subjects with MCI from those with NC is challenging due to the low sensitivity and high variability of
current clinical measures such as annually assessed neuropsychological test results and self-reported
functional measurements. Moreover, even though in-vivo biomarkers such as beta-amyloid and tau can
be used as indicators of pathological progression towards AD, the screening of biomarkers are
prohibitively expensive to be widely used among pre-symptomatic individuals in the outpatient setting.
We hypothesize that progressive cognitive impact from MCI has elicited detectable changes in the way
people talk and behave, which can be sensed by inexpensive and accessible sensors and leveraged
by machine learning (ML) algorithms to build predictive models for quantifying the risk of MCI. Our
preliminary results on a small cohort indicated that there are significant differences between MCI and
NC subjects during a semi-structured conversation, and ML algorithms can use such differences for
differentiating MCI and NC with promising performance. Our preliminary results in behavior monitoring
also suggest highly predictive performance using temporal patterns of behavior signals. In this project,
we plan to build upon our initial success and conduct comprehensive studies on language and behavior
markers in larger-scale cohorts to build high-performance and interpretable ML models for screening
MCI. Our three Specific Aims are: (1) Discover language markers and develop predictive models
characterizing MCI. Using interview recordings from the I-CONECT project, we will use natural
language processing and ML algorithms to extract linguistic and acoustic markers and develop multi-
modal learning algorithms to fuse the two types of information. (2) Discover behavior markers and
develop predictive models characterizing MCI. Using the in-home monitoring data from ORCATECH,
we will extract short-term and long-term behavior patterns and integrate multi-granularity behavior
markers to differentiate MCI and NC. (3) Linking language and behavior markers with an information
framework. We will use demographics and common clinical information to profile the patients and match
the two cohorts via certain similarity metrics, creating complementary features for improved prediction.
项目概要
最近的估计表明,阿尔茨海默病(AD)可能成为第三大死因
对于美国老年人来说,仅次于心脏病和癌症。
AD涉及进行性脑细胞衰竭,目前尚不清楚细胞衰竭的原因。
疾病的进展,关键之一是调查轻度患者的认知变化
尽管发现了影像学和临床功能等生物标志物。
研究表明,在区分 AD 患者与认知正常 (NC) 患者方面表现出色
它们在早期 MCI 检测信号中的区分能力相当有限。
由于敏感性低且变异性高,MCI 受试者与 NC 受试者相比具有挑战性。
当前的临床措施,例如每年评估的神经心理学测试结果和自我报告
此外,尽管 β-淀粉样蛋白和 tau 蛋白等体内生物标志物可以进行功能测量。
作为AD病理进展的指标,生物标志物的筛选是
在门诊环境中的症状前个体中广泛使用的费用过高。
我们发现,MCI 对认知的渐进影响已经引起了可察觉的变化
人们的说话和行为可以通过廉价且易于使用的传感器来感知并利用
通过机器学习 (ML) 算法构建预测模型来量化 MCI 的风险。
一个小队列的初步结果表明,MCI 和 MCI 之间存在显着差异。
半结构化对话期间的 NC 主题,ML 算法可以利用这种差异
我们在行为监控方面的初步结果使 MCI 和 NC 区分开来。
还建议使用行为信号的时间模式来实现高度预测性能。
我们计划在初步成功的基础上对语言和行为进行全面的研究
大规模队列中的标记物,以构建高性能且可解释的 ML 模型进行筛选
MCI。我们的三个具体目标是:(1) 发现语言标记并开发预测模型
我们将使用 I-CONECT 项目的采访录音来表征 MCI。
语言处理和机器学习算法,用于提取语言和声学标记并开发多种
(2) 发现行为标记和
使用 ORCATECH 的家庭监测数据开发表征 MCI 的预测模型,
我们将提取短期和长期行为模式并整合多粒度行为
(3) 将语言和行为标记与信息联系起来
我们将使用人口统计数据和常见临床信息来描述患者并进行匹配。
两个队列通过某些相似性指标进行比较,创建互补的特征以改进预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKO Hayama DODGE其他文献
HIROKO Hayama DODGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKO Hayama DODGE', 18)}}的其他基金
Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
- 批准号:
10709094 - 财政年份:2021
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9311584 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I Administrative Supplement
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段行政补充
- 批准号:
10363310 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9898209 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9930344 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Conversational Engagement as a Means to Delay Onset AD: Phase II Administrative Supplement
对话参与作为延迟 AD 发作的一种手段:第二阶段行政补充
- 批准号:
10058784 - 财政年份:2016
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9348726 - 财政年份:2016
- 资助金额:
$ 228.64万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 228.64万 - 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 228.64万 - 项目类别:
Ready to CONNECT: Conversation and Language in Autistic Teens
准备好联系:自闭症青少年的对话和语言
- 批准号:
10807563 - 财政年份:2023
- 资助金额:
$ 228.64万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 228.64万 - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 228.64万 - 项目类别: