Quantitative dissection of the events that encode bone size and shape during regeneration
再生过程中编码骨骼大小和形状的事件的定量剖析
基本信息
- 批准号:10386597
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmputationBiological AssayBiological ProcessBiosensorBody SizeBone MatrixBone RegenerationCell Differentiation processCell ProliferationCellsComputing MethodologiesDataDevelopmentDigit structureDissectionEnvironmentEventExhibitsExtracellular Signal Regulated KinasesFeedbackGeneticGoalsGrowthGrowth FactorHourHumanHypertrophyImageIndividualInjuryLateralLengthLigandsMammalsMapsMedialMentorshipMesenchymalModelingMolecularNatural regenerationNatureOsteoblastsPathway interactionsPatternPharmacologyProcessProliferatingResearchResolutionRoleShapesSignal PathwaySignal TransductionStructureSystemTestingTimeTissuesTrainingTraumatic AmputationTraumatic injuryTravelUniversitiesWorkWritingZebrafishappendagebasebonebone fracture repairdesensitizationexperimental studyimaging modalityimaging platforminjuredinsightmigrationnoveloptogeneticsosteoblast differentiationregenerativeregenerative biologyspatiotemporaltherapeutic targettissue regeneration
项目摘要
ABSTRACT
Mammals possess a limited compacity to regenerate appendages following traumatic injury and amputation,
including regenerating digit tips and healing of bone fractures. In contrast, zebrafish can regenerate entire
appendages following amputation. As in development, regenerated appendages are scaled appropriately to
body size. Extensive genetic and pharmacological experiments have established that canonical signaling
pathways, such as Fgf and Wnt, are reactivated following injury to promote the cell proliferation, migration, and
differentiation that drives regeneration of appendages. However, how these pathways encode size and shape
is unclear. This is due, in part, to the limited number of quantitative and dynamic descriptions of these signaling
pathways and their downstream cellular events during regeneration. To address these gaps in the
understanding of appendage scaling during regeneration, this proposal aims to develop a quantitative, live
imaging platform for zebrafish caudal fin regeneration. Specifically, Aim 1 will determine the role of extracellular
signal-regulated kinase (ERK) in encoding cell proliferation and bone size during fin ray regeneration. Aim 2
will define the role of negative feedback during fin regeneration and investigate whether this negative feedback
contributes to the robustness of this regeneration event. Collectively, this work will establish a quantitative
model for interrogating the cellular basis of size and shape control during regeneration. This work will be
conducted at Duke University under the mentorship of Dr. Di Talia and Dr. Poss. This is a highly collaborative
training environment that affords expertise in quantitative and regenerative biology. This proposed research
will be carried out alongside focused training in quantitative approaches, scientific writing, and mentorship.
抽象的
哺乳动物在遭受创伤和截肢后再生附肢的能力有限,
包括再生指尖和骨折愈合。相比之下,斑马鱼可以再生整个
截肢后的附肢。在开发过程中,再生的附属物会适当缩放
车身尺寸。广泛的遗传和药理学实验已经证实,经典信号传导
Fgf 和 Wnt 等通路在损伤后重新激活,促进细胞增殖、迁移和
驱动附属物再生的分化。然而,这些通路如何编码大小和形状
尚不清楚。部分原因是这些信号的定量和动态描述数量有限
再生过程中的途径及其下游细胞事件。为了解决这些差距
了解再生过程中的附属物缩放,该提案旨在开发定量的、实时的
斑马鱼尾鳍再生成像平台。具体来说,目标 1 将确定细胞外的作用
信号调节激酶(ERK)在鳍条再生过程中编码细胞增殖和骨大小。目标2
将定义负反馈在鳍再生过程中的作用,并研究这种负反馈是否
有助于该再生事件的稳健性。总的来说,这项工作将建立一个定量的
用于询问再生过程中尺寸和形状控制的细胞基础的模型。这项工作将是
在杜克大学 Di Talia 博士和 Poss 博士的指导下进行。这是一个高度协作的
提供定量和再生生物学专业知识的培训环境。这项拟议的研究
将与定量方法、科学写作和指导方面的重点培训一起进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashley Rich Baker其他文献
Ashley Rich Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashley Rich Baker', 18)}}的其他基金
Quantitative dissection of the events that encode bone size and shape during regeneration
再生过程中编码骨骼大小和形状的事件的定量剖析
- 批准号:
10620118 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
相似国自然基金
PGE2通过EP受体调控CCL2/CCR2信号通路轴介导截肢后爆发痛的外周机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
躯体感觉皮层神经元-小胶质细胞交互作用调控截肢后继发性疼痛的神经机制
- 批准号:82171218
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
下肢截肢后外周血管阻抗改变影响心血管系统的血流动力学研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
面向膝上截肢者融合智能下肢假肢的新型外骨骼机器人关键技术研究
- 批准号:61803272
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
利用靶向神经移植术重建缺失肢体运动神经信息源及机制研究
- 批准号:81760416
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Overcoming pressure ulcers with engineered hormones and stem cells
用工程激素和干细胞克服压疮
- 批准号:
10821146 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Defining key differences in mouse fibroblasts during digit regeneration and fibrosis
定义小鼠成纤维细胞在手指再生和纤维化过程中的关键差异
- 批准号:
10602674 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Nitric oxide-releasing glycosaminoglycans for treating complex wounds
释放一氧化氮的糖胺聚糖用于治疗复杂伤口
- 批准号:
10584269 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Metabolic Immunomodulation of Wound-Associated Macrophage Functional Plasticity as a Novel Diagnostic Target in Diabetic Veterans
伤口相关巨噬细胞功能可塑性的代谢免疫调节作为糖尿病退伍军人的新诊断目标
- 批准号:
10370267 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别: