Design and Application of Cationic Nanocarriers to Inhibit Breast Cancer Progression in Primary and Metastatic Sites
阳离子纳米载体的设计和应用抑制乳腺癌原发灶和转移灶的进展
基本信息
- 批准号:10379060
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:4T1AcidsAcuteAminesBindingBiocompatible MaterialsBreast Cancer CellBreast Cancer ModelBreast Cancer PatientBreast Cancer TreatmentBreast cancer metastasisCancer BiologyCationsCell DeathCellsChargeControl GroupsDNA BindingDataDendrimersDevelopmentDiagnosisDiseaseDoxorubicinElectrostaticsEncapsulatedEngineeringEpidermal Growth Factor ReceptorEstrogensExcisionFutureGenerationsHMGB1 geneHumanImmuneImmune systemIn VitroInbred BALB C MiceInflammationInflammatoryInflammatory ResponseInfusion proceduresInstitutional Review BoardsInterleukin-6KnowledgeLuciferasesMalignant NeoplasmsMeasuresMediatingMedicineMetastatic breast cancerMethodsMicroRNAsMitoticModelingMolecularMusNF-kappa BNecrosisNeoadjuvant TherapyNeoplasm MetastasisNucleic Acid BindingNucleic AcidsOperative Surgical ProceduresOrganPaclitaxelPathway interactionsPatientsPatternPolymersPreparationPrimary NeoplasmProgesterone ReceptorsPropertyProteinsRNAReceptor ActivationRecurrenceResearchResearch PersonnelSamplingSerumSiteStructureSystemTNF geneTestingTherapeutic EffectTimeToll-like receptorsToxic effectTrainingTreatment EfficacyTumor Cell InvasionUniversitiesWaterWomanbreast cancer progressioncancer diagnosiscancer subtypescell free DNAchemotherapycytokinedesignexperimental groupexperimental studyfightingimaging studyimmune activationimprovedin vitro Assayin vivo Modelmacrophagemalignant breast neoplasmmammarymortalitynanocarriernanoparticleneoplastic cellnovelnovel therapeutic interventionprotein complextargeted treatmenttaxanetreatment grouptriple-negative invasive breast carcinomatumortumor growthtumor microenvironment
项目摘要
PROJECT SUMMARY
Triple-negative breast cancer (TNBC) is characterized by the lack of estrogen/progesterone receptors and
human epidermal growth factor receptor 2 (HER2) expression as well as its high rates of recurrence and
metastasis. Chemotherapy persists as one of the mainstays of breast cancer treatment, particularly for
triple-negative breast cancer. While chemotherapy is beneficial for killing the malignant tumor cells, it leads
to the release of damage-associated molecular patterns (DAMPs). DAMPs are a contributing factor to
cancer-related inflammation which can potentiate future metastatic spread through several mechanisms
such as the development of tumor microenvironments of metastasis (TMEM) sites. These DAMPs include
nucleic acids, cytokines, and proteins such as HMGB1. Polyamidoamine (PAMAM) is a biodegradable,
water-soluble dendrimer polymer with the ability to possess different charges and sizes depending on its
terminal branches and degree of branching (i.e. generation), respectively. Amine-terminated PAMAM is
positively charged (i.e. cationic) and can bind DNA and RNA. Building on this dendrimer, we have
synthesized modified cationic PAMAM-generation 3 (PAMAM-G3) derivatives that have decreased toxicity
and can encapsulate chemodrugs as nanoparticles and maintain the nucleic acid-binding property. Our
preliminary tests have shown that these materials can bind to both cell-free DNA and RNA released as a
result of treating triple-negative breast cancer cells with chemotherapy such as doxorubicin and paclitaxel.
In this research plan we aim to explore what other chemotherapy-induced DAMPs our materials can bind to
and suppress. The anti-metastatic effects of the materials will be studied using in-vitro and in-vivo models
as well as patient serum samples. A murine metastatic breast cancer model will serve as the basis for
assessing the effects of traditional chemotherapy delivery compared with chemotherapy delivery using
PAMAM-G3 nanoparticles with respect to primary tumor growth, degree of metastasis, and inflammatory
materials in mouse serum. In summary, we propose to pursue the specific aims of (1) Characterize
damage-associated molecular patterns (DAMPs) released from chemotherapy-treated TNBC cells;
(2) Determine the therapeutic efficacy of PAMAM-G3 scavenging polymers and nanoparticles on
immune system activation and invasive-potential caused by chemotherapy-induced DAMPs; and (3)
Understand the mechanisms behind PAMAM-G3 mediated DAMP scavenging. The experiments in this
proposal will contribute new knowledge on how chemotherapy influences the profile of circulating pro-
metastatic DAMPs. In addition, a novel method of dual chemotherapy delivery and DAMP scavenging via
modified PAMAM-G3 nanoparticles will be studied for its utility in reducing primary tumor and metastatic
burden. Completion of this proposal at Columbia University will provide the applicant with training in cancer
biology and engineering in medicine in preparation to becoming an independent investigator.
项目概要
三阴性乳腺癌(TNBC)的特点是缺乏雌激素/孕激素受体,
人表皮生长因子受体 2 (HER2) 的表达及其高复发率和
转移。化疗仍然是乳腺癌治疗的主要手段之一,特别是对于
三阴性乳腺癌。虽然化疗有利于杀死恶性肿瘤细胞,但它会导致
损伤相关分子模式(DAMP)的释放。 DAMP 是一个促成因素
与癌症相关的炎症可以通过多种机制增强未来的转移扩散
例如肿瘤转移微环境(TMEM)的发展。这些 DAMP 包括
核酸、细胞因子和蛋白质,如 HMGB1。聚酰胺胺 (PAMAM) 是一种可生物降解的、
水溶性树枝状聚合物,能够根据其具有不同的电荷和尺寸
分别是末端分支和分支程度(即世代)。胺封端的 PAMAM 是
带正电荷(即阳离子),可以结合 DNA 和 RNA。在这种树枝状聚合物的基础上,我们有
合成了具有降低毒性的改性阳离子 PAMAM 第 3 代 (PAMAM-G3) 衍生物
并且可以将化学药物封装为纳米颗粒并保持核酸结合特性。我们的
初步测试表明,这些材料可以与游离 DNA 和 RNA 结合,以释放形式释放。
用阿霉素和紫杉醇等化疗治疗三阴性乳腺癌细胞的结果。
在这项研究计划中,我们的目标是探索我们的材料可以与哪些其他化疗诱导的 DAMP 结合
并压制。将使用体外和体内模型研究材料的抗转移作用
以及患者血清样本。小鼠转移性乳腺癌模型将作为基础
评估传统化疗与化疗相比的效果
PAMAM-G3 纳米颗粒对原发肿瘤生长、转移程度和炎症的影响
小鼠血清中的材料。总之,我们建议追求以下具体目标:(1)表征
化疗处理的 TNBC 细胞释放的损伤相关分子模式 (DAMP);
(2) 确定 PAMAM-G3 清除聚合物和纳米颗粒对
化疗诱导的 DAMP 引起的免疫系统激活和侵袭潜力;和(3)
了解 PAMAM-G3 介导的 DAMP 清除背后的机制。本次实验中
该提案将贡献关于化疗如何影响循环亲细胞特征的新知识
转移性 DAMP。此外,一种通过双化疗递送和 DAMP 清除的新方法
将研究修饰的 PAMAM-G3 纳米颗粒在减少原发性肿瘤和转移性肿瘤方面的效用
负担。在哥伦比亚大学完成此提案将为申请人提供癌症方面的培训
医学生物学和工程学,为成为一名独立研究者做准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tolulope Olatokunbo Akinade其他文献
Tolulope Olatokunbo Akinade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tolulope Olatokunbo Akinade', 18)}}的其他基金
Design and Application of Cationic Nanocarriers to Inhibit Breast Cancer Progression in Primary and Metastatic Sites
阳离子纳米载体的设计与应用抑制乳腺癌原发灶和转移灶的进展
- 批准号:
10599908 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
清补通络方丹酚酸B通过激活TLR-4通路促进急性期布鲁氏菌感染宿主体内巨噬细胞M1极化的机制研究
- 批准号:82360867
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
天然代谢物α-酮戊二酸协同恩西地平逆转IDH2突变型急性髓系白血病耐药的机制研究
- 批准号:82300179
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
急性髓系白血病细胞脂肪酸代谢异质性及其调控机制
- 批准号:82370180
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
敗血症性急性腎障害に対する核酸医薬RAGEアプタマーによる革新的治療法の開発
开发利用核酸药物RAGE适配体治疗脓毒症急性肾损伤的创新治疗方法
- 批准号:
24K11776 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Therapeutic enzyme depletion of L-serine for cancer treatment
L-丝氨酸的治疗性酶消耗用于癌症治疗
- 批准号:
10650618 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Soluble Epoxide Hydrolase Inhibitor GSK2256294 for Acute Ischemic Stroke
可溶性环氧化物水解酶抑制剂 GSK2256294 用于治疗急性缺血性中风
- 批准号:
10672750 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
New Therapy for the Treatment of Primary Biliary Cholangitis.
治疗原发性胆汁性胆管炎的新疗法。
- 批准号:
10697484 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: