Intelligent Interfaces for Interactive Analysis of High-Content Cellular Images
用于高内容细胞图像交互式分析的智能界面
基本信息
- 批准号:7617093
- 负责人:
- 金额:$ 17.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-13 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs disease modelBiologicalBiomedical ResearchCellsCellular MorphologyChemicalsCommunitiesComputer SimulationDataData AnalysesDatabasesDevelopmentDisease modelDrosophila genusEducational process of instructingEnvironmentFeedbackFutureGene ExpressionGenesGoalsHumanHuntington DiseaseImageImage AnalysisKnowledgeLeftLightMetadataMethodsMiningModelingNeuronsPatternPhenotypePreclinical Drug EvaluationProceduresProcessRNA InterferenceRecording of previous eventsResearchResearch PersonnelRetrievalSchemeScientistScreening procedureSystemTechniquesTechnologyTestingTrainingUser-Computer InterfaceVisualanticancer researchbasecell typecellular imagingdetectordrug discoveryempoweredexperiencegene functiongenome-widehigh throughput technologyimage processinginnovationinterestnovelprogramsresearch studytool
项目摘要
DESCRIPTION (provided by applicant): Cell-based High-Content Screening (HCS) has recently led to high-throughput image-based studies of cellular phenotypes under various external treatments such as chemical compound or or RNA interference (RNAi). Such studies will significantly advance our understanding of gene functions, shed new light on the underlying biological networks, and have direct impact on cancer research and drug discovery/development. However, due to the inadequacies of existing image analysis tools, most HCS screens only relied on analyses of simple marker readouts and left the most informative and profound aspects of cellular morphology unexplored. Domain knowledge is yet to be accumulated for developing image analysis tools to effectively and thoroughly analyze highly diverse cellular images generated by the HCS technology, which are relatively new to image processing research. Nonetheless, building up domain knowledge requires human experts to visually explore a prohibitively large number of images. Therefore, it calls for a new computing paradigm that facilitates teamwork between experimental and computational biologists to overcome this dilemma. We propose to develop a novel computing paradigm that integrates unsupervised pattern mining techniques, visual data exploration interfaces and content-based image retrieval with relevance feedback techniques to facilitate the application of the HCS technology to biomedical research. This paradigm will be realized as a system called imCellPhen, which will be evalutated and tested in the context of two morphological screens of Drosophila neurodisease models using the HCS technology. The main features of imCellPhen are its intelligent interfaces that allow users to (a) effectively and efficiently navigate large-scale HCS image databases, (b) reliably detect novel cellular phenotypes, and (c) teach the system to recognize cellular phenotypes by interactively training computational models. The model training procedure is in fact an implicit, seamless, and effective process for accumulating domain knowledge. The scheme and techniques developed in this research will benefit any HCS screens and thus will be valuable tools for the biomedical research community.
描述(由申请人提供):基于细胞的高素质筛查(HCS)最近导致了对各种外部处理(例如化学化合物或RNA干扰(RNAI))的细胞表型的高通量图像研究。这样的研究将显着提高我们对基因功能的理解,对潜在的生物网络进行新的启示,并直接影响癌症研究和药物发现/发育。但是,由于现有图像分析工具的不足,大多数HCS筛选仅依赖于简单标记读数的分析,并且没有探索细胞形态的最有用和最深刻的方面。用于开发图像分析工具的域知识尚未积累,以有效地分析由HCS技术产生的高度多样化的细胞图像,HCS技术对图像处理研究是相对较新的。但是,建立领域知识需要人类专家在视觉上探索大量图像。因此,它要求建立一个新的计算范式,以促进实验生物学家和计算生物学家之间的团队合作,以克服这一困境。我们建议开发一种新颖的计算范式,该范式将无监督的模式采矿技术,视觉数据探索接口和基于内容的图像检索与相关反馈技术相结合,以促进HCS技术在生物医学研究中的应用。该范式将被实现为一种称为Imcellphen的系统,将在使用HCS技术的两个果蝇神经疾病模型的形态学筛选中进行评估和测试。 Imcellphen的主要特征是其智能接口,使用户可以(a)有效,有效地导航大型HCS图像数据库,(b)可靠地检测到新颖的细胞表型,(c)教导系统通过交互式训练计算模型来识别蜂窝表型。实际上,模型培训程序是一个隐式,无缝且有效的过程,用于累积领域知识。本研究中开发的计划和技术将使任何HCS屏幕受益,因此将成为生物医学研究界的宝贵工具。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic inference of multicellular regulatory networks using informative priors.
使用信息先验自动推断多细胞调控网络。
- DOI:10.1504/ijcbdd.2009.028820
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Sun,Xiaoyun;Hong,Pengyu
- 通讯作者:Hong,Pengyu
Oligodendrocyte development and myelinogenesis are not impaired by high concentrations of phenylalanine or its metabolites.
- DOI:10.1007/s10545-010-9052-3
- 发表时间:2010-04
- 期刊:
- 影响因子:4.2
- 作者:Schoemans, Renaud;Aigrot, Marie-Stephane;Wu, Chaohong;Maree, Raphael;Hong, Pengyu;Belachew, Shibeshi;Josse, Claire;Lubetzki, Catherine;Bours, Vincent
- 通讯作者:Bours, Vincent
Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases.
用于挖掘大规模 RNAi-HCS 图像数据库的智能接口。
- DOI:10.1109/bibe.2007.4375742
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Lin,Chen;Mak,Wayne;Hong,Pengyu;Sepp,Katharine;Perrimon,Norbert
- 通讯作者:Perrimon,Norbert
Identification of neural outgrowth genes using genome-wide RNAi.
- DOI:10.1371/journal.pgen.1000111
- 发表时间:2008-07-04
- 期刊:
- 影响因子:4.5
- 作者:Sepp, Katharine J.;Hong, Pengyu;Lizarraga, Sofia B.;Liu, Judy S.;Mejia, Luis A.;Walsh, Christopher A.;Perrimon, Norbert
- 通讯作者:Perrimon, Norbert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pengyu Hong其他文献
Pengyu Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pengyu Hong', 18)}}的其他基金
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Intelligent Interfaces for Interactive Analysis of High-Content Cellular Images
用于高内容细胞图像交互式分析的智能界面
- 批准号:
7470047 - 财政年份:2007
- 资助金额:
$ 17.42万 - 项目类别:
Intelligent Interfaces for Interactive Analysis of High-Content Cellular Images
用于高内容细胞图像交互式分析的智能界面
- 批准号:
7316890 - 财政年份:2007
- 资助金额:
$ 17.42万 - 项目类别:
相似国自然基金
Cav3.1钙通道介导的Sphk/S1P信号在帕金森病模型中的作用及机制研究
- 批准号:82371265
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胸骨缩短模型的Scheuermann's 病脊柱后凸畸形发病机制的研究
- 批准号:81401848
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
以BACE1 mRNA剪接为靶点的高效细胞模型及其药物筛选
- 批准号:30873457
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Illuminating neurodegenerative tauopathy from somatic genomic landscapes of single human brain cells
从单个人脑细胞的体细胞基因组景观中阐明神经退行性 tau 病
- 批准号:
10686570 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Identifying the role of notch3 in brain pericyte function in health and Alzheimer's disease
确定 notch3 在健康和阿尔茨海默病中大脑周细胞功能中的作用
- 批准号:
10679198 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别: