Individualized brain systems and depression
个体化大脑系统和抑郁症
基本信息
- 批准号:10360953
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-06 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectiveAftercareAgreementAmygdaloid structureAnhedoniaAntidepressive AgentsAnxietyArchitectureArousalBase of the BrainBehaviorBehavioralBrainBrain MappingBupropionCardiologyClinicalClinical TrialsCognitiveCognitive deficitsComplexCorpus striatum structureDataData SetDatabasesDevelopmentDiagnosisDiagnosticDiseaseDopamine Uptake InhibitorsEconomic BurdenExhibitsFoundationsFunctional Magnetic Resonance ImagingFutureGoalsHippocampus (Brain)IndividualIndividual DifferencesInterventionLateralLinkMachine LearningMajor Depressive DisorderMapsMedialMedicalMental DepressionMental disordersMethodologyMethodsMoodsNeuroanatomyNorepinephrineOncologyOutcomeParietalParietal LobePatientsPatternPerformancePersonsPharmacologyPharmacotherapyPlant RootsPrediction of Response to TherapyPrefrontal CortexPrevalencePsyche structurePsychiatryResearchSelective Serotonin Reuptake InhibitorSertralineStressSymptomsSyndromeSystemTestingTranslationsTreatment outcomeantagonistanxiety spectrum disordersanxiousbasebehavioral outcomebehavioral responsebiosignatureburden of illnessclinical carecomorbiditydata sharingimprovedindividual variationinnovationkappa opioid receptorsneural modelneuroimagingorganizational structureprecision medicinepredicting responseprogramspublic health relevancerelating to nervous systemresponsesocialtheoriestreatment response
项目摘要
PROJECT SUMMARY / ABSTRACT
The goal of this proposal is to advance neural models of major depressive disorder (MDD). Prior studies of
MDD and related conditions have relied on group-level information when making inferences about individual
brains, and have yielded limited translation and clinical impact. Such group-level approaches are limited given
robust evidence that the brain exhibits substantial individual variability in its organization. This proposal describes
a computational psychiatry approach rooted in new computational neuroimaging methods that will provide
improved detail in mapping the brains of individuals with MDD, including in relation to diagnostic status, symptom
and behavioral profiles, and predicting treatment response.
More specifically, the team proposes an advanced fMRI-based brain mapping approach that will be used to
deeply characterize the rich organizational structure of functional brain systems at the level of individuals
(yielding “individualized brain systems”). The proposed research will be completed by leveraging over 700
existing datasets acquired through data sharing. This proposal is feasible, in part due, to data sharing and the
strong theoretical and methodological foundations provided by the PI and the team’s prior research. MDD is a
particularly promising focus for this proposal given that it is (1) highly heterogeneous and thus an ideal target for
mapping individual variability; (2) highly prevalent and the leading contributor to global disease burden; and that
(3) fewer than one in three MDD patients remit after treatment.
The Specific Aims of this proposal are to: (1) Map individualized brain systems in MDD; (2) Characterize
relations between individualized brain systems and core MDD symptoms and behavioral deficits; and, finally, to
(3) Explicate predictive relations between individualized brain systems and MDD clinical trial outcomes to three
mechanistically distinct treatments. In addition to theory-driven studies, this proposal includes the development
of a complementary data-driven machine learning approach that will use only individualized brain system
features to make clinically meaningful predictions about specific patients. This will include predicting diagnostic
status, symptom and behavioral profiles, and treatment outcomes.
Precision medicine has considerably impacted several medical fields, including cardiology and oncology. We
have yet to see similar developments in psychiatry, given, in part, due to the challenge of mapping relations
among clinical features of mental illness and the brain. The development of computational neuroimaging
approaches, including those in the current proposal, now provide new opportunities to address this challenge
and translational gap.
项目概要/摘要
该提案的目标是推进重度抑郁症 (MDD) 的神经模型的先前研究。
MDD 和相关条件在对个人进行推断时依赖于群体级别的信息
鉴于这种群体层面的方法是有限的,并且产生了有限的转化和临床影响。
该提议描述了大脑在其组织中表现出巨大个体差异的有力证据。
一种植根于新的计算神经成像方法的计算精神病学方法,该方法将提供
改善重度抑郁症患者大脑图谱的细节,包括与诊断状态、症状相关的细节
和行为概况,并预测治疗反应。
更具体地说,该团队提出了一种先进的基于功能磁共振成像的大脑绘图方法,该方法将用于
深入表征个体水平上功能性大脑系统的丰富组织结构
(产生“个性化大脑系统”)。拟议的研究将通过利用 700 多个来完成。
通过数据共享获得的现有数据集是可行的,部分原因在于数据共享和
PI 和团队之前的研究提供了强大的理论和方法基础。
鉴于该提案具有高度异质性,因此是一个理想的目标,因此该提案特别有希望成为焦点
绘制个体变异性;(2) 高度普遍且是全球疾病负担的主要因素;
(3) 不到三分之一的MDD患者在治疗后症状缓解。
该提案的具体目标是: (1) 绘制 MDD 中的个体化大脑系统图 (2) 表征;
个体化大脑系统与核心 MDD 症状和行为缺陷之间的关系;
(3) 向三个人阐明个体化大脑系统与 MDD 临床试验结果之间的预测关系
除了理论驱动的研究之外,该提案还包括开发。
一种互补的数据驱动机器学习方法,仅使用个性化的大脑系统
对特定患者做出有临床意义的预测的功能,其中包括预测诊断。
状态、症状和行为概况以及治疗结果。
精准医学对包括心脏病学和肿瘤学在内的多个医学领域产生了重大影响。
精神病学方面尚未看到类似的发展,部分原因是映射关系的挑战
精神疾病和大脑的临床特征之间的关系。计算神经影像学的发展。
包括当前提案中的方法在内的方法现在为应对这一挑战提供了新的机会
和翻译差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew D Sacchet其他文献
Matthew D Sacchet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew D Sacchet', 18)}}的其他基金
相似国自然基金
地理场景与旅游情感的时空关联与影响机理研究
- 批准号:42301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向少样本多模态会话情感分析的持续多模态提示微调学习方法研究
- 批准号:62366010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
靶向初级运动皮层改善慢性痛与情感障碍共病的环路机制及干预研究
- 批准号:82330036
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
情感还是语义?表情符号对社交媒体旅游体验分享有用性的影响机理研究
- 批准号:72362009
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
自然场景下基于自监督的精准视频情感识别研究
- 批准号:62362003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Improving Brain-Behavior Markers of Preschool Executive Function through aGroup-Based Parenting Intervention for Low-Income Families
通过针对低收入家庭的团体育儿干预改善学前执行功能的大脑行为标志
- 批准号:
10663529 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Optimizing pain-related outcomes following orthopedic trauma: testing novel risk factors and determining the feasibility of a new pain psychology intervention
优化骨科创伤后疼痛相关的结果:测试新的危险因素并确定新的疼痛心理学干预的可行性
- 批准号:
10773933 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
SCALE: Strategies for Implementing GlobalConsent to Prevent Sexual Violence in University Men
SCALE:实施全球共识以防止大学男性性暴力的策略
- 批准号:
10672800 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
- 批准号:
10626449 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Improving Brain-Behavior Markers of Preschool Executive Function through aGroup-Based Parenting Intervention for Low-Income Families
通过针对低收入家庭的团体育儿干预改善学前执行功能的大脑行为标志
- 批准号:
10663529 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别: