mtDNA depleter mouse for decoding mitochondrial regulation of diverse organs
mtDNA 消耗小鼠用于解码不同器官的线粒体调节
基本信息
- 批准号:10352486
- 负责人:
- 金额:$ 22.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAffectAgingAlanineAnimal ModelAnimalsAreaAspartic AcidAtrophicBiocompatible MaterialsCardiovascular systemCell DeathCell ProliferationCellsCellular Metabolic ProcessChild DevelopmentDNADNA biosynthesisDNA polymerase gammaDNA-Directed DNA PolymeraseDefectDevelopmentDiabetes MellitusDiseaseDominant-Negative MutationDoxycyclineFemaleFoundationsFunctional disorderGene ExpressionGenetically Modified AnimalsGoalsHealthHeartHumanHuman DevelopmentHypertrophyImpairmentInstitutesKidneyLightLiverMalignant NeoplasmsMitochondriaMitochondrial DNAMitochondrial DNA depletion syndromesMitochondrial DiseasesMusMutationNational Cancer InstituteNational Heart, Lung, and Blood InstituteNational Institute of Allergy and Infectious DiseaseNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Neurological Disorders and StrokeNational Institute on AgingNuclearObesityOrganOxidative PhosphorylationPathologyPlayPloidiesPolymerasePositioning AttributeProductionRegulationReportingResearchResearch PersonnelRoleSignal TransductionSpleenSystemTestingTissuesUnited States National Institutes of HealthWomen&aposs Healthage relatedanimal model developmentbasebiological adaptation to stressbody systemdriving forcehuman diseaseimprovedin vivointerestmalemitochondrial dysfunctionmouse modelmutantnervous system disorderoperationreproductive organresponseskin organogenesis
项目摘要
This application is responsive to PAR-19-369 “Development of Animal Models and Related Biological
Materials for Research R21,” which seeks application to develop animal models that are applicable to the
research interests of multiple NIH institutes. It addresses one of the objective “Characterization of new and
significantly improved genetically modified animal models that are applicable to diseases that impact multiple
body systems, e.g., animal models with mitochondrial defects.” Impaired mitochondrial function is
associated with many primary mitochondrial diseases in which mitochondrial dysfunction is the primary cause
of the disease. Notably, mtDNA depletion syndromes (MDS) are characterized by a severe reduction in mtDNA
content leading to impaired mitochondrial function in affected tissues and organs. Secondary mitochondrial
diseases in which mitochondria are secondarily involved include cardiovascular, diabetes, obesity, neurological
disorders, and cancer. Moreover, a general decline in mitochondrial function is extensively reported during aging
and is known to be a driving force underlying age-related human diseases. Despite the enormous importance of
mitochondria in the optimal function of various organs, the in vivo role of mitochondria in the vast majority of
mammalian organs remain unknown. Mitochondrial DNA polymerase γ (POLG1) is the only DNA polymerase
involved in the synthesis of mtDNA. We developed an inducible mouse expressing, in the polymerase domain of
POLG1, a dominant-negative (DN) mutation (an aspartic acid to alanine (D to A) mutation at position 1135, that
induces depletion of mtDNA in the whole animal. Our preliminary studies suggest that impaired mitochondrial
function in the whole animal results in multisystem dysfunction. These include the development of skin wrinkles
and hypertrophy of the liver, kidney, heart and spleen. Furthermore, mtDNA depleter mice show atrophy of
male and female reproductive organs. Based on these observations, we hypothesize that the
characterization of mtDNA depleter mice will facilitate the understanding of the vital function of
mitochondria in the development and function of multiple organ systems. We propose two specific
aims to test this hypothesis: Aim 1: Determine the organ-specific hypertrophic and atrophic
pathology associated with mitochondrial dysfunction in mtDNA depleter mouse Aim 2: Identify
organ specific mitochondrial stress response mechanisms underlying hypertrophy and atrophy.
Our long-term goal is to enable the widespread use of this mouse model, which will accelerate mitochondrial
research across various organs and diseases. The mouse will be useful in diverse research areas relevant to the
National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute on Aging, the National
Heart, Lung and Blood Institute, the National Institute of Child and Human Development, and the National
Institute of Neurological Disorders and Stroke, the National Cancer Institute, the National Institute of Allergy
and Infectious Diseases and Center for Women’s health.
该应用程序响应 PAR-19-369“动物模型和相关生物学的开发”
研究材料 R21”,寻求应用来开发适用于
它涉及多个 NIH 研究所的研究兴趣,其目标之一是“新的和新的特征的表征”。
显着改进的转基因动物模型适用于影响多种疾病的疾病
身体系统,例如线粒体功能受损的动物模型。”
与许多原发性线粒体疾病相关,其中线粒体功能障碍是主要原因
值得注意的是,mtDNA 耗竭综合征 (MDS) 的特点是 mtDNA 严重减少。
导致受影响组织和器官中线粒体功能受损的次级线粒体。
线粒体继发性参与的疾病包括心血管、糖尿病、肥胖、神经系统疾病
此外,衰老过程中线粒体功能普遍下降。
尽管它非常重要,但已知它是与年龄相关的人类疾病的驱动力。
线粒体在各个器官中发挥最佳功能,线粒体在体内的绝大多数作用
哺乳动物器官中的线粒体 DNA 聚合酶 γ (POLG1) 是唯一的 DNA 聚合酶。
我们在聚合酶结构域中开发了一种可诱导的小鼠表达。
POLG1,显性失活 (DN) 突变(第 1135 位的天冬氨酸到丙氨酸(D 到 A)突变,
我们的初步研究表明线粒体受损。
整个动物的功能会导致多系统功能障碍,其中包括皮肤皱纹的形成。
此外,mtDNA 消耗小鼠的肝脏、肾脏、心脏和脾脏也出现萎缩。
根据这些观察,我们认为男性和女性的生殖器官。
mtDNA 消耗小鼠的表征将有助于了解 mtDNA 的重要功能
我们提出了两个具体的线粒体在多个器官系统的发育和功能中的作用。
旨在检验这一假设:目标 1:确定器官特异性肥大和萎缩
与 mtDNA 消耗小鼠线粒体功能障碍相关的病理学 目标 2:识别
器官特异性线粒体应激反应机制是肥大和萎缩的基础。
我们的长期目标是使这种小鼠模型得到广泛使用,这将加速线粒体
小鼠将在与各种器官和疾病相关的多个研究领域发挥作用。
国家糖尿病、消化和肾脏疾病研究所、国家老龄化研究所、国家
心脏、肺和血液研究所、国家儿童和人类发展研究所以及国家
神经疾病和中风研究所、国家癌症研究所、国家过敏研究所
以及传染病和妇女健康中心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KESHAV K SINGH其他文献
KESHAV K SINGH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KESHAV K SINGH', 18)}}的其他基金
mtDNA depleter mouse for decoding mitochondrial regulation of diverse organs
mtDNA 消耗小鼠用于解码不同器官的线粒体调节
- 批准号:
10589093 - 财政年份:2022
- 资助金额:
$ 22.28万 - 项目类别:
Mitochondrial DNA and Prostate Cancer in African American
非裔美国人的线粒体 DNA 和前列腺癌
- 批准号:
8735897 - 财政年份:2013
- 资助金额:
$ 22.28万 - 项目类别:
Arsenic Repression of GADD153 and Breast Cancer
砷对 GADD153 的抑制与乳腺癌
- 批准号:
8569744 - 财政年份:2013
- 资助金额:
$ 22.28万 - 项目类别:
Mitochondrial DNA and Prostate Cancer in African American
非裔美国人的线粒体 DNA 和前列腺癌
- 批准号:
8494189 - 财政年份:2013
- 资助金额:
$ 22.28万 - 项目类别:
Arsenic Repression of GADD153 and Breast Cancer
砷对 GADD153 的抑制与乳腺癌
- 批准号:
8723827 - 财政年份:2013
- 资助金额:
$ 22.28万 - 项目类别:
Tumorigenic role of mitochondria in African-American women
线粒体在非裔美国女性中的致瘤作用
- 批准号:
8135488 - 财政年份:2010
- 资助金额:
$ 22.28万 - 项目类别:
相似国自然基金
探索间质机械力通过影响SMAD4/JNK/PIN1功能轴对胰腺癌糖代谢重编程的调控机制
- 批准号:82372906
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
色氨酸代谢产物5-HIAA通过干预AHR-NFATc1途径影响RA骨破坏的机制研究
- 批准号:82302049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群通过短链脂肪酸代谢影响妊娠期糖尿病发病风险的分子流行病学研究
- 批准号:82304218
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SUV39H2通过铁死亡影响乳腺癌转移的作用及机制研究
- 批准号:82303121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠罗斯拜瑞氏菌通过丙酸失活酪氨酸激酶JAK2影响STAT3磷酸化阻抑UC肠道纤维化的分子机制研究
- 批准号:82370539
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 22.28万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Crosstalk Between Nurr1 and Risk Factors of Parkinson's Disease and its Regulation by Nurr1's Ligands
Nurr1与帕金森病危险因素的串扰及其配体的调控
- 批准号:
10677221 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Investigating the role of myenteric macrophages in enteric synucleinopathy
研究肌间巨噬细胞在肠突触核蛋白病中的作用
- 批准号:
10678094 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 22.28万 - 项目类别: