3D Bioprinting of Biomimetic Constructs for Rotator Cuff Augmentation
用于肩袖增强的仿生结构的 3D 生物打印
基本信息
- 批准号:10188428
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAcuteAddressAdipose tissueAffectAngiogenic FactorAnimalsArchitectureAreaAutologousBiologicalBiomechanicsBiomimeticsBlood VesselsBone RegenerationCell Differentiation processCellsChronicCicatrixCollagenCollagen FiberDataDefectDevelopmentDoseEncapsulatedEngineeringExhibitsExtracellular MatrixFailureFatty acid glycerol estersFibrocartilagesFibrosisGoalsGrowth FactorHumanHydrogelsImpairmentImplantIn VitroInfiltrationInflammationKnowledgeMesenchymal Stem CellsModelingMuscleNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusOutcome MeasurePatternPhenotypePhysiciansPrintingPropertyRegulationReportingRoleRotator CuffShoulder PainStructureSurfaceSurgical suturesSystemTechniquesTechnologyTendon structureTestingTextilesTherapeuticThickTissuesTranslatingUnited StatesVascularizationVisitWorkXenograft procedurebasebioprintingbonebone healingdesignhealingimprovedin vitro regenerationin vivoinfraspinatous muscleinnovative technologiesmechanical propertiesnanofibernovel strategiesosteogenicprimary outcomerepairedrotator cuff injuryrotator cuff tearscaffoldstem cell differentiationstem cellstissue regenerationtreatment strategy
项目摘要
Project Summary
Rotator cuff tendon tears account for more than 4.5 million physician visits per year, and over 250,000 rotator
cuff repair surgeries are performed annually in the United States. For massive rotator cuff defect or chronic
tears with significant retraction and tissue loss, multiple strategies, including auto-, allo- and xenografts as well
as synthetic implants, have been used to augment the bone-tendon junction to improve the rates of successful
healing of these severe rotator cuff tears. Despite the current advances in tissue augmentation, the overall
failure rate has been reported to be between 38% and 65%. Obstacles in the development of approaches to
address tendon-to-bone healing are partly because (1) current augmentation options fail to mimic multizoal
structure of native rotator cuff tissue; (2) uniform matrix microenvironment impedes the heterogeneous
differentiation and vascularization of progenitor cells/mesenchymal stem cells (MSC); (3) limited knowledge
has been gained about how MSC differentiation status and vascularization pattern within different zonal region
affect rotator cuff healing. We have developed a novel strategy by combining 3D bioprinting technique with
biotextile technique to generate engineered rotator cuff constructs with zonal structure and spatial bioactive
factor distribution. The proposed studies will test the hypothesis that tendon-to-bone regeneration is enhanced
in vitro and in vivo by spatial differentiation of adipose derived MSC (ADMSC) and spatial control of
vascularization degree in pre-designed region in the optimized bioprinted microenvironment. The specific aims
of the studies are (i) determine how spatial differentiation of ADMSC within bioprinted rotator cuff constructs
affect tendon-to-bone healing; and (ii) determine how the spatially incorporated bioactive factors regulate
ADMSC differentiation, vascularization and rotator cuff repair. A massive rabbit infraspinatus tendon defect
model will be employed for both of the aims. The primary outcome measures will include inflammation,
construct integration, collagen fiber alignment, collagen types in different regions, muscle quality and fat
infiltration, and tensile biomechanics. This proposal will develop biological augmentation strategies to promote
scarless healing. Our approach is to better understand the roles of exogenous stem cells and vasculature on
tendon-to-bone interface regeneration in vitro and in vivo.
项目概要
肩袖肌腱撕裂每年导致超过 450 万人次就诊,超过 250,000 名肩袖肌腱撕裂患者
美国每年都会进行袖带修复手术。对于大量肩袖缺损或慢性
具有显着回缩和组织损失的撕裂,采用多种策略,包括自体移植、同种异体移植和异种移植
作为合成植入物,已用于增强骨肌腱连接以提高成功率
治愈这些严重的肩袖撕裂。尽管目前组织增强方面取得了进展,但总体而言
据报道,失败率在 38% 至 65% 之间。开发方法中的障碍
解决肌腱到骨愈合的部分原因是(1)当前的增强选项无法模仿多动物
原生肩袖组织的结构; (2)均匀的基质微环境阻碍了异质
祖细胞/间充质干细胞(MSC)的分化和血管化; (3)知识有限
已获得不同带状区域内 MSC 的分化状态和血管化模式
影响肩袖愈合。我们通过将 3D 生物打印技术与
生物纺织技术可生成具有区域结构和空间生物活性的工程肩袖结构
因子分布。拟议的研究将检验肌腱到骨骼再生得到增强的假设
通过脂肪源性 MSC (ADMSC) 的空间分化和空间控制,在体外和体内
优化生物打印微环境中预先设计区域的血管化程度。具体目标
这些研究包括 (i) 确定生物打印的肩袖结构中 ADMSC 的空间分化如何
影响肌腱至骨骼的愈合; (ii) 确定空间结合的生物活性因子如何调节
ADMSC 分化、血管化和肩袖修复。兔冈下肌腱巨大缺损
模型将用于这两个目标。主要结果指标包括炎症、
结构整合、胶原纤维排列、不同区域的胶原蛋白类型、肌肉质量和脂肪
渗透和拉伸生物力学。该提案将制定生物增强策略以促进
无疤愈合。我们的方法是更好地了解外源干细胞和脉管系统对
体外和体内肌腱-骨界面再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Duan其他文献
Bin Duan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Duan', 18)}}的其他基金
Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
- 批准号:
10811395 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
A Hydrogel Ionic Circuit-Based Electrical Stimulation System for Restoration of Denervated Muscles After Peripheral Nerve Injuries
基于水凝胶离子电路的电刺激系统,用于周围神经损伤后失神经肌肉的恢复
- 批准号:
10445353 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
A Hydrogel Ionic Circuit-Based Electrical Stimulation System for Restoration of Denervated Muscles After Peripheral Nerve Injuries
基于水凝胶离子电路的电刺激系统,用于周围神经损伤后失神经肌肉的恢复
- 批准号:
10303900 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
3D Bioprinting of Biomimetic Constructs for Rotator Cuff Augmentation
用于肩袖增强的仿生结构的 3D 生物打印
- 批准号:
10410435 - 财政年份:2018
- 资助金额:
$ 31.6万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
3D micro-physiological systems for identification of therapeutic myokines
用于识别治疗性肌因子的 3D 微生理系统
- 批准号:
10595294 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Early Toxicity Detection Technologies via Exosomal Signatures in 3D Hepatic Tissues
通过 3D 肝组织中的外泌体特征进行早期毒性检测技术
- 批准号:
10450330 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别: