Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
基本信息
- 批准号:9982392
- 负责人:
- 金额:$ 69.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:16p11.222q11.2AblationAffectAnimal ModelArchitectureBiological ModelsCRISPR/Cas technologyCRKL geneCell LineCell modelChildClustered Regularly Interspaced Short Palindromic RepeatsCompanionsComplexComputer ModelsCritical PathwaysDNA Sequence AlterationDataDefectDevelopmentDiagnosisDiseaseDisease modelDoseEngineeringExpression ProfilingGene CombinationsGene ExpressionGene Expression ProfileGenesGeneticGenetic TranscriptionGenomeGenomic SegmentGenomic approachGenomicsGoalsGrantHumanIn VitroIndividualKidneyMediatingModelingMolecularMolecular ComputationsMolecular ProfilingMusNatureNeurodevelopmental DisorderNeuronsPathogenicityPathway interactionsPhenotypePopulationPreventionProcessRecurrenceReproducibilityResourcesSpecificitySyndromeTechnologyTestingTherapeuticTissuesValidationZebrafishbasecommon treatmentcomorbiditycongenital anomalydisabilitydosagegene discoverygenome editinghomologous recombinationimprovedin vivoin vivo Modelinduced pluripotent stem cellinnovationinsightmicrodeletionmolecular phenotypemouse modelnerve stem cellneuropsychiatrynovelrelating to nervous systemscreeningtherapeutic targettraittranscriptome
项目摘要
ABSTRACT
Reciprocal genomic disorders (RGDs) involve recurrent microdeletion and microduplicaton of identical genomic
segments. RGDs are mediated by non-allelic homologous recombination (NAHR) and are collectively among
the most common recurrent genetic causes of neurodevelopmental disorders (NDD) and congenital anomalies
in humans. Given that the impact of RGDs is usually early in development, these disorders disproportionately
affect children and often result in lifelong disabilities. Discovery of the genes the molecular consequences of
RGDs and the genes that underlie components of these disorders would therefore represent exceptionally high
priority targets for mechanistic studies and therapeutic targeting across a spectrum of Mendelian and complex
disorders. Our Preliminary Data suggest that an integrated in vitro and in vivo molecular and computational
genomics approach using cellular and animal modeling can identify molecular signatures associated with
RGDs and the genetic drivers of aberrant phenotypes and dysregulated networks. In these studies, we will
first define the gene expression profiles and cellular phenotypes associated with microdeletion and
microduplication of the 8-12 most prevalent RGD regions in neural derivatives from isogenic induced
pluripotent stem cell (iPSC) lines. We will accomplish this using a CRISPR/Cas9 genome editing approach we
recently developed that targets the flanking segmental duplications and mimics NAHR-mediated mechanisms
in humans (Aim 1). We will then seek the specific genes associated with RGD-associated phenotypes using
high-throughput driver gene screening in zebrafish (Aim 2) to evaluate all individual genes and pairwise
interactions within RGD regions. In Aim 3 we will then seek to validate these predicted drivers and determine
their impact in diverse neuronal lineages and across mouse tissues. These studies will thus follow a framework
our investigative team has previously used to identify genetic drivers of non-recurrent microdeletion syndromes
and several RGD regions, including 16p11.2 RGD, and apply innovative approaches and technologies to
enable us to conduct these studies at scale and compare signatures across RGDs. At their conclusion, tehse
analyses will define the molecular signatures of the most common RGDs in humans, the genes that drive
specific components of these signatures, their tissue specificity, and the capacity to rescue the strongest
signatures through dosage manipulation in vitro and in vivo.
抽象的
相互基因组疾病(RGD)涉及相同基因组的反复微缺失和微重复
段。 RGD 由非等位基因同源重组 (NAHR) 介导,并且统称为
神经发育障碍 (NDD) 和先天性异常最常见的复发性遗传原因
在人类中。鉴于 RGD 的影响通常发生在发育早期,这些疾病不成比例地
影响儿童并常常导致终身残疾。基因的发现及其分子后果
因此,RGD 和构成这些疾病成分的基因将代表异常高的水平。
跨孟德尔和复杂谱系的机制研究和治疗靶向的优先目标
失调。我们的初步数据表明,集成的体外和体内分子和计算
使用细胞和动物模型的基因组学方法可以识别与
RGD 以及异常表型和失调网络的遗传驱动因素。在这些研究中,我们将
首先定义与微缺失相关的基因表达谱和细胞表型
等基因诱导的神经衍生物中 8-12 个最常见的 RGD 区域的微复制
多能干细胞 (iPSC) 系。我们将使用 CRISPR/Cas9 基因组编辑方法来实现这一目标
最近开发的针对侧翼节段重复并模仿 NAHR 介导的机制
人类(目标 1)。然后,我们将使用以下方法寻找与 RGD 相关表型相关的特定基因:
对斑马鱼进行高通量驱动基因筛选(目标 2),以评估所有个体基因和成对基因
RGD 区域内的相互作用。在目标 3 中,我们将寻求验证这些预测的驱动因素并确定
它们对不同神经元谱系和小鼠组织的影响。因此,这些研究将遵循一个框架
我们的研究团队之前曾用于识别非复发性微缺失综合征的遗传驱动因素
和几个 RGD 区域,包括 16p11.2 RGD,并应用创新方法和技术
使我们能够大规模地进行这些研究并比较 RGD 之间的特征。在他们的结论中,tese
分析将定义人类最常见 RGD 的分子特征,即驱动基因
这些特征的具体组成部分、它们的组织特异性以及拯救最强者的能力
通过体外和体内剂量操作来识别特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E TALKOWSKI其他文献
MICHAEL E TALKOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E TALKOWSKI', 18)}}的其他基金
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
10004116 - 财政年份:2019
- 资助金额:
$ 69.6万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10414009 - 财政年份:2019
- 资助金额:
$ 69.6万 - 项目类别:
Exploring the genetic architecture of structural birth defects
探索结构性出生缺陷的遗传结构
- 批准号:
9809586 - 财政年份:2019
- 资助金额:
$ 69.6万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10162661 - 财政年份:2019
- 资助金额:
$ 69.6万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
10425331 - 财政年份:2018
- 资助金额:
$ 69.6万 - 项目类别:
Scalable tool and comprehensive maps to interpret structural variation across the neuropsychiatric spectrum
可扩展的工具和综合图谱可解释整个神经精神谱系的结构变化
- 批准号:
10737203 - 财政年份:2018
- 资助金额:
$ 69.6万 - 项目类别:
相似国自然基金
22q11.2微缺失综合症中T盒转录因子Tbx1与信号接头蛋白Crkl遗传相互作用致肺动脉发育不良缺陷的机制研究
- 批准号:81170153
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于染色体22q11.2候选基因与腭心面综合征表型的分子诊断研究
- 批准号:81070813
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
无22q11.2区基因微缺失的心脏圆锥动脉干畸形患者中新TBX1突变体蛋白的功能研究
- 批准号:81070135
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
染色体22q11.2区域泌尿系统畸形关键致病基因的克隆与鉴定
- 批准号:30571867
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Genetic and Synaptic Mechanisms of State Representation Impairments in Mice
小鼠状态表征损伤的遗传和突触机制
- 批准号:
10377365 - 财政年份:2020
- 资助金额:
$ 69.6万 - 项目类别:
Genetic and Synaptic Mechanisms of State Representation Impairments in Mice
小鼠状态表征损伤的遗传和突触机制
- 批准号:
10597071 - 财政年份:2020
- 资助金额:
$ 69.6万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
10425331 - 财政年份:2018
- 资助金额:
$ 69.6万 - 项目类别:
Molecular mechanisms and genetic drivers of reciprocal genomic disorders
相互基因组疾病的分子机制和遗传驱动因素
- 批准号:
10224767 - 财政年份:2018
- 资助金额:
$ 69.6万 - 项目类别:
Dissecting recurrent microdeletion syndromes using dual-guide genome editing
使用双引导基因组编辑剖析复发性微缺失综合征
- 批准号:
9087365 - 财政年份:2015
- 资助金额:
$ 69.6万 - 项目类别: