NEURON SIMULATION ENVIRONMENT
神经元模拟环境
基本信息
- 批准号:7601500
- 负责人:
- 金额:$ 0.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBackBrainCellsComputer Retrieval of Information on Scientific Projects DatabaseElectronic MailElementsEnd PointEnvironmentEquationEquilibriumFundingGrantHandIndividualInstitutesInstitutionMaintenanceMethodsMindModelingNeuronsNumbersPhasePlant RootsPurposeResearchResearch PersonnelResourcesSideSourceStandards of Weights and MeasuresSwitzerlandSystemTimeTreesUnited States National Institutes of HealthUniversitiesVertebral columnabstractingcomputer scienceexperienceparallel computingperformance testssimulationvoltage
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
I want to maintain NEURON for use on the Cray XT3. I was doing this for the past year but apparently my login has expired on that machine. I want to get back on to continue this maintenance and also to test the performance of a method for parallel computing of individual cells. The following abstract has been submitted to the CNS 2007 meeting in Toronto: Fully Implicit Parallel Simulation of Single Neurons Michael Hines, Felix Schuermann Department of Computer Science, Yale University, New Haven, CT, 06520, USA Brain Mind Institute, EPFL, Lausanne, Switzerland Email: michael.hines@yale.edu When tree topology matrices are divided into subtrees where each subtree is on a different cpu and with the constraint that other subtrees are not connected to a given subtree at more than two distinct points (defining a backbone path on that subtree), the entire system remains amenable to direct gaussian elimination. The complexity increase is twice the number of divisions and four times the number of multiplications normally required along the backbones due to the necessity, during the triangularization phase, of transforming the tridiagonal backbone into an N topology matrix. In addition, each subtree is required to send its root diagonal and right hand side element, or, in the case of a subtree with a backbone, the 2x2 matrix and right hand sides of the backbone end points, to one of the cpus where that information is added together to form a reduced tree matrix of rank equal to the number of split points on the cell. The reduced tree matrix equation is solved, giving the voltages at the split points, and this information is sent back to the appropriate subtrees on the other cpus. Those subtrees with backbones can then use the N topology to quickly compute the voltages along the backbone and everyone can complete the back substitution phase of their gaussian elimination. Accuracy is the same as with standard gaussian elimination on a single cpu and any quantitative differences are attributed to accumulated round off error due to different ordering of subtrees containing backbones. With this method, it is often feasible to divide a 3-d reconstructed neuron model into a dozen or so pieces and experience almost linear speedup. We have used the method for purposes of load balance in network simulations when some cells are very much larger than the average cell and there are more cpus than cells. The method is available in the current standard distribution of NEURON. Acknowledgments: NINDS grant NS11613 and the Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目及
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
对于中心来说,它不一定是研究者的机构。
我想保留 NEURON 以在 Cray XT3 上使用。我去年就这样做了,但显然我的登录信息已经在那台机器上过期了。我想回去继续进行维护,并测试单个单元并行计算方法的性能。以下摘要已提交至多伦多 CNS 2007 会议: 单神经元的完全隐式并行模拟 Michael Hines, Felix Schuermann Department of Computer Science, Yale University, New Haven, CT, 06520, USA Brain Mind Institute, EPFL, Lausanne,瑞士电子邮件:michael.hines@yale.edu 当树形拓扑矩阵被划分为子树时,每个子树位于不同的 cpu 上,并且约束条件为如果其他子树未在两个以上的不同点处连接到给定子树(在该子树上定义主干路径),则整个系统仍然适合直接高斯消除。由于在三角化阶段需要将三对角主干转换为 N 拓扑矩阵,因此复杂性的增加是主干上通常所需的除法次数的两倍和乘法次数的四倍。此外,每个子树都需要将其根对角线和右侧元素发送到其中一个 cpu,或者在具有主干的子树的情况下,将 2x2 矩阵和主干端点的右侧发送到其中一个信息被加在一起形成一个简化的树矩阵,其秩等于单元上的分割点的数量。求解简化的树矩阵方程,给出分割点处的电压,并将该信息发送回其他 cpu 上的相应子树。然后,那些具有主干的子树可以使用 N 拓扑快速计算主干上的电压,并且每个人都可以完成高斯消除的回代阶段。准确性与单个 CPU 上的标准高斯消除相同,任何数量差异都归因于由于包含主干的子树的不同排序而导致的累积舍入误差。使用这种方法,通常可以将 3D 重建神经元模型划分为十几个左右的部分,并获得几乎线性的加速。当某些单元比平均单元大得多并且 cpu 数量多于单元时,我们在网络模拟中使用该方法来实现负载平衡。该方法在当前的 NEURON 标准发行版中可用。致谢:NINDS 授予 NS11613 和瑞士洛桑联邦理工学院 (EPFL) 大脑思维研究所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL L HINES其他文献
MICHAEL L HINES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL L HINES', 18)}}的其他基金
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8260864 - 财政年份:2010
- 资助金额:
$ 0.03万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8816130 - 财政年份:2010
- 资助金额:
$ 0.03万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8073127 - 财政年份:2010
- 资助金额:
$ 0.03万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
8444502 - 财政年份:2010
- 资助金额:
$ 0.03万 - 项目类别:
Extension of NEURON simulator for simulation of reaction-diffusion in neurons
用于模拟神经元反应扩散的神经模拟器的扩展
- 批准号:
7890956 - 财政年份:2010
- 资助金额:
$ 0.03万 - 项目类别:
SenseLab: Integration of Multidisciplinary Sensory Data
SenseLab:多学科感官数据整合
- 批准号:
8697553 - 财政年份:2009
- 资助金额:
$ 0.03万 - 项目类别:
SenseLab: Integration of Multidisciplinary Sensory Data
SenseLab:多学科感官数据整合
- 批准号:
8815173 - 财政年份:2009
- 资助金额:
$ 0.03万 - 项目类别:
SenseLab: Integration of Multidisciplinary Sensory Data
SenseLab:多学科感官数据整合
- 批准号:
9302332 - 财政年份:2009
- 资助金额:
$ 0.03万 - 项目类别:
相似国自然基金
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
- 批准号:U21B2054
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
- 批准号:61773006
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
- 批准号:41571277
- 批准年份:2015
- 资助金额:74.0 万元
- 项目类别:面上项目
多层柱状波导中后退波的传播特性及其应用
- 批准号:11474303
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
相似海外基金
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
- 批准号:
10714021 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
A high throughput multiplexed pipeline for models of Alzheimer’s Disease
用于阿尔茨海默病模型的高通量多重管道
- 批准号:
10766665 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
BRAIN CONNECTS: Multi-beam transmission electron microscopy of iteratively milled semi-thick tissue sections
大脑连接:迭代研磨半厚组织切片的多束透射电子显微镜
- 批准号:
10669305 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别: