Gating and permeation in ionotropic glutamate receptors
离子型谷氨酸受体的门控和渗透
基本信息
- 批准号:9927688
- 负责人:
- 金额:$ 42.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAcuteAddressAffectAgonistAlzheimer&aposs disease brainBindingBiological AssayBrainBrain DiseasesC-terminalCell DeathCellsChemicalsChronicClinicCommunicationComplementCouplingCysteineDataDiseaseElectrophysiology (science)ElementsEpilepsyEventExtracellular DomainFluorescence Resonance Energy TransferFree EnergyGlutamate ReceptorGlutamatesGoalsHumanInheritedIon ChannelIon Channel GatingKineticsLearningLigand Binding DomainLinkMeasurementMediatingMolecularMutationN-Methyl-D-Aspartate ReceptorsNMDA receptor A1Nervous system structureNeurodevelopmental DisorderNeurotransmittersOutcomePathway interactionsPharmaceutical PreparationsPhysiologyPositioning AttributePotassium ChannelPropertyProteinsPublishingResolutionRoleSchizophreniaSignal TransductionSocietiesSpecificitySpermineStructureSynapsesSynaptic TransmissionTestingTransmembrane Domainacute strokeautism spectrum disorderbasecomparativecrosslinkde novo mutationdisease-causing mutationepileptic encephalopathiesexcitotoxicityexperimental studyinsertion/deletion mutationmind controlmolecular dynamicsmutation assaynervous system disordernoveloperationpostsynapticpresynapticreceptorreceptor functionsimulationsmall moleculestargazinsynaptic function
项目摘要
Our long-term goal is to address molecular determinants of brain disorders. Fast synaptic
transmission in the brain is mediated by ion channels that are directly activated by a chemical
neurotransmitter. NMDA and AMPA receptors are glutamate-gated ion channels that convert the
presynaptic release of glutamate, the predominant excitatory neurotransmitter in the brain, into a
postsynaptic signal. By defining the operation of NMDA and AMPA receptors, we will gain a better
understanding of how they control brain function. We will also learn how to modulate their function
with greater precision and specificity to help understand, and potentially treat, brain disroders such as
schizophrenia, epilepsy, and the excitotoxicity associated with acute and chronic brain disorders.
Our experiments will focus on a eukaryotic transmembrane segment, the M4 segment, which is
positioned around the pore domain. Recent published and preliminary data from our lab has indicated
that the M4 segments act in novel ways to regulate core synaptic functions of NMDA and AMPA
receptors. Highlighting their significance is that inherited and de novo mutations in the M4 segments
induce neurodevelopmental disorders and epileptic encephalopathies. Aim 1 will address the novel
hypothesis that the unique kinetics of NMDA receptors at synapses are due to two kinetically distinct
gates and that the M4 segments regulate these gates in a subunit-specific manner. We will address
this hypothesis using cysteine cross-linking, rigorous single channel analysis, and molecular dynamic
simulations. Aim 2 will address the hypothesis that the M4 segments in NMDA receptors are a major
allosteric conduit coupling external domains to transmembrane and internal domains. Here, we will
test this hypothesis by decoupling external domains from transmembrane and internal domains and
assay this decoupling using electrophysiological and FRET based measurements. Aim 3 will address
the hypothesis that the M4 segments in AMPA receptors carry out distinct functional roles including
acting as a conduit for auxiliary proteins found at synapses. Here, we will compare functional
properties between the M4 segments in NMDA and AMPA receptors using electrophysiological
recordings and molecular dynamic simulations. Our experiments will delineate molecular features of
NMDA and AMPA receptors that contribute to synaptic function. This information will aid in
developing specific therapies to target these receptors in nervous system disorders.
我们的长期目标是解决大脑疾病的分子决定因素。快速突触
大脑中的传输是由离子通道介导的,离子通道直接被化学物质激活
神经递质。 NMDA 和 AMPA 受体是谷氨酸门控离子通道,可将
突触前释放谷氨酸(大脑中主要的兴奋性神经递质)
突触后信号。通过定义 NMDA 和 AMPA 受体的运作,我们将获得更好的结果
了解它们如何控制大脑功能。我们还将学习如何调节它们的功能
具有更高的精确度和特异性,有助于理解并可能治疗脑部疾病,例如
精神分裂症、癫痫以及与急性和慢性脑部疾病相关的兴奋性毒性。
我们的实验将重点关注真核生物跨膜片段,即 M4 片段,它是
位于孔域周围。我们实验室最近发布的初步数据表明
M4 片段以新颖的方式调节 NMDA 和 AMPA 的核心突触功能
受体。强调其重要性的是 M4 片段中的遗传突变和从头突变
诱发神经发育障碍和癫痫性脑病。目标 1 将针对小说
假设突触处 NMDA 受体的独特动力学归因于两种不同的动力学
门,并且 M4 片段以亚基特异性方式调节这些门。我们将解决
该假设使用半胱氨酸交联、严格的单通道分析和分子动力学
模拟。目标 2 将提出以下假设:NMDA 受体中的 M4 片段是主要的
将外部域耦合到跨膜域和内部域的变构导管。在这里,我们将
通过将外部域与跨膜域和内部域解耦来检验这一假设
使用基于电生理学和 FRET 的测量来分析这种解耦。目标 3 将解决
假设 AMPA 受体中的 M4 片段具有不同的功能作用,包括
作为突触中发现的辅助蛋白的管道。在这里,我们将比较功能
使用电生理学研究 NMDA 和 AMPA 受体 M4 片段之间的特性
录音和分子动力学模拟。我们的实验将描述分子特征
NMDA 和 AMPA 受体有助于突触功能。这些信息将有助于
开发针对神经系统疾病中这些受体的特定疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LONNIE P WOLLMUTH其他文献
LONNIE P WOLLMUTH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LONNIE P WOLLMUTH', 18)}}的其他基金
Gating and permeation in ionotropic glutamate receptors
离子型谷氨酸受体的门控和渗透
- 批准号:
9201660 - 财政年份:2015
- 资助金额:
$ 42.36万 - 项目类别:
Gating and permeation in ionotropic glutamate receptors
离子型谷氨酸受体的门控和渗透
- 批准号:
10385791 - 财政年份:2015
- 资助金额:
$ 42.36万 - 项目类别:
Gating and permeation in ionotropic glutamate receptors
离子型谷氨酸受体的门控和渗透
- 批准号:
8886217 - 财政年份:2015
- 资助金额:
$ 42.36万 - 项目类别:
Gating and Permeation in Ionotropic Glutamate Receptors
离子型谷氨酸受体的门控和渗透
- 批准号:
10592327 - 财政年份:2015
- 资助金额:
$ 42.36万 - 项目类别:
Gating and permeation in ionotropic glutamate receptors
离子型谷氨酸受体的门控和渗透
- 批准号:
10591811 - 财政年份:2015
- 资助金额:
$ 42.36万 - 项目类别:
Functional Architecture of Glutamate Receptor Channels
谷氨酸受体通道的功能结构
- 批准号:
7008053 - 财政年份:2005
- 资助金额:
$ 42.36万 - 项目类别:
Functional Architecture of Glutamate Receptor Channels
谷氨酸受体通道的功能结构
- 批准号:
6765167 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
Functional Architecture of Glutamate Receptor Channels
谷氨酸受体通道的功能结构
- 批准号:
7385770 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
Functional Architecture of Glutamate Receptor Channels
谷氨酸受体通道的功能结构
- 批准号:
7558260 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Circuit control of motivation to take and seek alcohol
饮酒和寻求酒精动机的电路控制
- 批准号:
10753712 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
RECIPROCAL FEEDBACK MECHANISMS OF GLIOBLASTOMA AND NEURONAL NETWORK HYPEREXCITABILITY
胶质母细胞瘤与神经网络过度兴奋的交互反馈机制
- 批准号:
10629813 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
A synaptic substrate for ketamine-mediated amelioration of stress-induced anhedonia
氯胺酮介导的改善应激性快感缺失的突触底物
- 批准号:
10500952 - 财政年份:2022
- 资助金额:
$ 42.36万 - 项目类别: